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1 Summary 

Despite decades of effort, defect triage and correction remains a central concern 
in software engineering. Indeed, modern software projects contain so many 
defects, and the cost of correcting defects remains so large, that projects typically 
ship with a long list of known but uncorrected defects. Consequences of this 
unfortunate situation include pervasive security vulnerabilities and the diversion 
of resources that would be better devoted to other, more productive, activities. 

The goal of this research is to automate the process of discovering, neutralizing 
and repairing software bugs and vulnerabilities. As part of this goal, we build 
components of a continuous automatic improvement system that can automat- 
ically search for errors and generate patches that repair the encountered errors. 
By removing the human from the loop, patch generation time can be reduced, 
patch robustness improved, leading to fewer unpatched systems. 

The systems that we developed during this program lay the foundation for future 
automatic program repair systems that can significantly reducing the time and 
effort required to deal with software defects. 
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2 Methods, Assumptions and Procedures 

For all the research we performed in this program, we adopted an experimental 
approach. We chose to evaluate our developed systems on realistic real-world ap- 
plications and formats to better understand their direct applicability to complex 
systems. All of the systems that we developed run on open source infrastructure 
(e.g., Linux) and do not require proprietary software to build and run. We made 
part of our software available for download via the Internet. 

In general, we observed the results we obtained and the general process of ob- 
taining these results and used them to drive further development. We also iden- 
tified any weaknesses or missing pieces and worked towards remedying the 
weaknesses and filling in any missing pieces. 

During the course of the project we devoted a major effort to integrating and 
evaluating the various different components. Our integration efforts focused on 
developing software to connect the different components. Once the software 
was developed we tested it and updated it as the tests indicated was necessary. 
We evaluated our techniques by applying them to different exploits. During this 
process we observed any deficiencies and developed techniques that addressed 
thesedeficiencies. 
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3 Introduction 

Software errors and vulnerabilities in server applications are a significant prob- 
lem for preserving system integrity and availability. The accepted wisdom is to 
use a multitude of tools, such as diligent software development strategies, dy- 
namic bug finders and static analysis tools in an attempt to eliminate as many 
bugs as possible. 

However, experience has shown that it is very hard to achieve bug-free software. 
As a result, even under the best of circumstances, buggy software is deployed 
and developers face a constant and time-consuming battle of creating and re- 
leasing patches fast enough to fix newly discovered bugs. Patches can take days 
if not weeks to create, and it is not uncommon for systems to continue running 
unpatched applications long after an exploit of a bug has become well-known. 

The goal of this research is to automate the process of discovering, neutralizing 
and repairing software bugs and vulnerabilities. In other words, to build a con- 
tinuous automatic improvement systems that can automatically search for errors 
and generate patches that repair the encountered errors. By removing the human 
from the loop, patch generation time can be reduced, patch robustness improved, 
leading to fewer unpatched systems. 

Our approach towards building continuous automatic improvement systems, 
revolves around three core thrusts as shown in Figure 1: 

• Vulnerability Discovery

• Vulnerability Isolation and Neutralization

• Vulnerability Repair

3.1 Vulnerability Discovery 

Previous techniques such as Fuzzing [15, 17] and concolic execution [46, 26, 
36, 27] have been shown to be effective in discovering errors in the initial input 
parsing stages of computations, but have had little to no success in exposing 
errors that lie deep within the program. 

As part of our research in automating vulnerability discovery we have researched 
and developed, under the CIDER project, a new technique and system, DIODE 
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Figure 1: Overview of CIDER’s Approach to Self-Healing Systems 

(Directed Integer Overflow Discovery Engine) [52], for automatically generating 
inputs that trigger integer overflow errors at critical sites. DIODE starts with a 
target site (such as a memory allocation site) and a target value (such as the size 
of the allocated memory block). It then uses symbolic execution to obtain an 
target expression that characterizes how the program computes the target value 
as a function of the input. It then transforms the target expression to obtain a 
target constraint. If the input 1) satisfies the target constraint while 2) causing the 
program to execute the target site, then it will trigger the error. 

DIODE shows that discovering and targeting specific potentially vulnerable 
program sites can effectively expose such deep errors. One of the keys to success 
is new techniques that work appropriately with sanity and blocking checks to 
obtain inputs that can successfully traverse these obstacles to reach the target site. 
The success of DIODE in exposing integer overflow vulnerabilities opens up the 
field to the further development of other targeted techniques that work effectively 
with sanity and blocking checks to expose deep errors. 

DIODE works with off-the-shelf, production x86 binaries. Our results show 
that, for our benchmark set of applications, and for every target memory alloca- 

Discover 

DIODE 

CodePhage MRC 

SOAP
RCV

SIFT 
Repair Neutralize 
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tion site exercised by our seed inputs (which the applications process correctly 
with no overflows), either 1) DIODE is able to generate an input that triggers an 
overflow at that site or 2) there is no input that would trigger an overflow for the 
observed target expression at that site. 

 
 

3.2 Vulnerability Isolation and Neutralization 
 

Errors and security vulnerabilities in software often occur in infrequently exe- 
cuted program paths triggered by atypical inputs. A standard way to ameliorate 
this problem is to use an anomaly detector that filters out such atypical inputs. 
The goal is to ensure that the program is only presented with standard inputs 
that it is highly likely to process without errors. A drawback of this technique is 
that it can filter out desirable, benign, but atypical inputs along with the atypical 
malicious inputs, thereby denying the user access to useful inputs. 

We propose a new technique, automatic input rectification. Instead of rejecting 
atypical inputs, the input rectifier modifies the input so that it is typical, then 
presents the input to the application, which then processes the input. We have 
three goals: a) present typical inputs (which the application is highly likely to 
process correctly) to the application unchanged, b) render any malicious inputs 
harmless by eliminating any atypical input features that may trigger errors or 
security vulnerabilities, while c) preserving most, if not all, of the desirable 
behavior for benign atypical inputs. A key empirical observation that motivates 
our technique is the following: 

Production software is usually tested on a large number of inputs. Standard 
testing processes ensure that the software performs acceptably on such inputs. 
We refer to such inputs as typical inputs and the space of such typical inputs as 
the comfort zone [51] of the application. On the other hand, inputs designed to 
exploit security vulnerabilities (i.e., malicious inputs) often lie outside the 
comfort zone. If the rectifier is able to automatically detect inputs that lie outside 
the comfort zone and map these inputs to corresponding meaningfully close 
inputs within the comfort zone, then it is possible to a) prevent attackers from 
exploiting the vulnerability in the software while b) preserving the ability of the 
user to access desirable data in atypical inputs (either benign or malicious). 

We present two systems for implementing automatic input rectification: SOAP [41] 
and SIFT [43]. 

5 
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SOAP (Sanitization Of Anomalous inPuts), is an automatic input rectification 
system designed to prevent overflow vulnerabilities and other memory address- 
ing errors. SOAP first learns a set of constraints over typical inputs that char- 
acterize a comfort zone for the application that processes those inputs. It then 
takes the constraints and automatically generates a rectifier that, when provided 
with an input, automatically produces another input that satisfies the constraints. 
Inputs that already satisfy the constraints are passed through unchanged; inputs 
that do not satisfy the constraints are modified so that they do. 

SOAP is a reactive system that has some drawbacks such as incomplete coverage 
and does not protect the application until it is attacked. SIFT is a proactive sys- 
tem, SIFT, for generating filters that discard inputs that may cause integer over- 
flow errors at memory allocation and block copy sites. Unlike previous reactive 
systems, SIFT proactively analyzes the program before it executes to generate 
filters that take all execution paths into consideration. SIFT can therefore nullify 
exploits that target unknown vulnerabilities (i.e., zero-day attacks). 

The combination of SOAP and SIFT provides support for applying automatic in- 
put rectification for systems statically (where access to source code is available) 
and dynamically. 

3.3 Repair 

Despite decades of effort, defect triage and correction remains a central concern 
in software engineering. Indeed, modern software projects contain so many 
defects, and the cost of correcting defects remains so large, that projects typically 
ship with a long list of known but uncorrected defects. Consequences of this 
unfortunate situation include pervasive security vulnerabilities and the diversion 
of resources that would be better devoted to other, more productive, activities. 
Automatic program repair holds out the promise of significantly reducing the 
time and effort required to deal with software defects. 

Under the CIDER project, we developed three automatic repair systems: Code- 
Phage [59], RCV [44], and SPR [42]. 

Code Phage (CP), a system for automatically transferring correct code from 
donor applications into recipient applications that process the same inputs to suc- 
cessfully eliminate errors in the recipient. Because CP works with binary donors 
with no need for source code or symbolic information, it supports a wide range 
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of use cases. To the best of our knowledge, CP is the first system to automati- 
cally transfer code across multiple applications. 

RCV, for enabling software applications to survive divide-by-zero and null- 
dereference errors. RCV operates directly on off-the-shelf, production, stripped 
x86 binary executables. RCV implements recovery shepherding, which attaches 
to the application process when an error occurs, repairs the execution, tracks the 
repair effects as the execution continues, contains the repair effects within the 
application process, and detaches from the process after all repair effects are 
flushed from the process state. RCV therefore incurs negligible overhead during 
the normal execution of the application. 

SPR, a new program repair system that uses a novel staged program repair strat- 
egy to efficiently search a rich search space of candidate repairs. Three key tech- 
niques work synergistically together to enable SPR to generate successful repairs 
for a range of software defects. Together, these techniques enable SPR to gen- 
erate correct repairs for over five times as many defects as previous systems 
evaluated on the same benchmark sets 
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4 Automatic Input Rectification 

Errors and security vulnerabilities in software often occur in infrequently exe- 
cuted program paths triggered by atypical inputs. A standard way to ameliorate 
this problem is to use an anomaly detector that filters out such atypical inputs. 
The goal is to ensure that the program is only presented with standard inputs 
that it is highly likely to process without errors. A drawback of this technique is 
that it can filter out desirable, benign, but atypical inputs along with the atypical 
malicious inputs, thereby denying the user access to useful inputs. 

4.1 Input Rectification 

(a) The original image 

(b) The rectified image 

Figure 2: An example image truncated by the rectification. 
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We propose a new technique, automatic input rectification. Instead of rejecting 
atypical inputs, the input rectifier modifies the input so that it is typical, then 
presents the input to the application, which then processes the input. We have 
three goals: a) present typical inputs (which the application is highly likely to 
process correctly) to the application unchanged, b) render any malicious inputs 
harmless by eliminating any atypical input features that may trigger errors or 
security vulnerabilities, while c) preserving most, if not all, of the desirable 
behavior for benign atypical inputs. A key empirical observation that motivates 
our technique is the following: 

Production software is usually tested on a large number of inputs. Standard 
testing processes ensure that the software performs acceptably on such inputs. 
We refer to such inputs as typical inputs and the space of such typical inputs as 
the comfort zone [51] of the application. On the other hand, inputs designed to 
exploit security vulnerabilities (i.e., malicious inputs) often lie outside the 
comfort zone. If the rectifier is able to automatically detect inputs that lie outside 
the comfort zone and map these inputs to corresponding meaningfully close 
inputs within the comfort zone, then it is possible to a) prevent attackers from 
exploiting the vulnerability in the software while b) preserving the ability of the 
user to access desirable data in atypical inputs (either benign or malicious). 

We present SOAP (Sanitization Of Anomalous inPuts), an automatic input rec- 
tification system designed to prevent overflow vulnerabilities and other memory 
addressing errors. SOAP first learns a set of constraints over typical inputs that 
characterize a comfort zone for the application that processes those inputs. It 
then takes the constraints and automatically generates a rectifier that, when pro- 
vided with an input, automatically produces another input that satisfies the con- 
straints. Inputs that already satisfy the constraints are passed through unchanged; 
inputs that do not satisfy the constraints are modified so that they do. 

 
 

4.2 Potential Advantages of Automatic Input Rectification 
 

Input rectification has several potential advantages over simply rejecting mali- 
cious or atypical inputs that lie outside the comfort zone: 

• Desirable Data in Atypical Benign Inputs: Anomaly detectors filter 
out atypical inputs even if they are benign. The result is that the user is 
completely denied access to data in atypical inputs. Rectification, on the 
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other hand, passes the rectified input to the application for presentation 
to the user. Rectification may therefore deliver much or even all of the 
desirable data present in the original atypical input to the user. 

• Desirable Data in Malicious Inputs: Even a malicious input may contain
data that is desirable to the user. Common examples include videos and
web pages with embedded malicious content. Rectification may eliminate
the exploits while preserving much of the desirable input from the orig- 
inal input. In this case the rectifier enables the user to safely access the
desirable data in the malicious input.

• Error Nullification: Even if they are not malicious, atypical inputs may
expose errors that prevent the application from processing them success- 
fully. In this case rectification may nullify the errors so that the application
can deliver most if not all of the desirable data in the input to the user.

4.3 The Input Rectification Technique 

SOAP operates on the parse tree of an input, which divides the input into a col- 
lection of (potentially nested) fields. Each field may contain an integer value, a 
string, or unparsed raw data bytes. SOAP infers and enforces 1) upper bound 
constraints on the values of integer fields, 2) constraints that capture whether or 
not an integer field must be non-negative, 3) upper bound constraints on the 
lengths of string or raw data byte fields, and 4) field length indicator constraints 
that capture relationships between the values of integer fields and the lengths of 
string or raw data fields. 

The dynamic taint analysis [28, 49, 35] engine of SOAP first identifies input 
fields that are related to critical operations during the execution of the applica- 
tion such as memory allocations and memory writes. The learning engine of 
SOAP then automatically infers constraints on these fields based on a set of train- 
ing inputs. When presented with an atypical input that violates these constraints, 
the rectifier of SOAP automatically modifies input fields iteratively until all of 
the constraints are satisfied. 

10
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(a) The original image 

 

 
(b) The rectified image 

 
Figure 3: An example image twisted by the rectification 

 
4.4 Nested Fields in Input Files 

 
One of the key challenges in input rectification is the need to deal with nested 
fields. In general, input formats are in tree structures containing arbitrarily 
nested fields. Inferring correlated constraints is hard, because our algorithm 
must consider relationships of multiple fields at different levels in the tree. 

Nested input fields also complicate the rectification. Changing one field may 
cause the file to violate constraints associated with enclosing fields. To produce a 
consistent rectified input, the rectifier must therefore apply a cascading sequence 
of modifications to correlated constraints as its constraint enforcement actions 
propagate up or down the tree of nested fields. 

 
 

4.5 Key Questions 
 

We identify several key questions that are critical to the success of the input 
rectificationtechnique: 

• Learning: Is it possible to automatically learn an effective set of con- 
straints from a set of typical non-malicious or benign inputs? 

• Rectification Percentage: Given a set of learned constraints, what per- 
centage of previously unseen benign inputs fail to satisfy the constraints 
and will therefore be modified by the rectifier? 
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• Rectification Quality: What is the overall quality of the outputs that the
application produces when given benign inputs that the rectifier has modi- 
fied to conform to the constraints?

• Security: Does the rectifier effectively protect the application against
inputs that exploit errors and security vulnerabilities?

We investigate these questions by applying SOAP to rectify inputs for five large 
software applications. The input formats of these applications include three im- 
age types (PNG, TIFF, JPEG), wave sound (WAV) and Shockwave flash video 
(SWF). We evaluate the effectiveness of our rectifier by performing the follow- 
ing experiments: 

• Input Acquisition: For each application, we acquire a set of inputs from
the Internet.

• Benign Input Acquisition: We run each application on each input in its
set and filter out any inputs that cause the application to crash. The result- 
ing set of inputs is the benign inputs. Because all of our applications are
able to process all of the inputs without errors, the set of benign inputs is
the same as the original set.

• Training and Test Inputs: We next randomly divide the inputs into two
sets: the training set and the test set.

• Potentially Malicious Inputs: We search the CVE security database [2]
and previous security papers to obtain malicious inputs designed to trigger
errors in the applications.

• Learning: We use the training set to automatically learn the set of con- 
straints that characterize the comfort zone of the application.

• Atypical Benign Inputs: For each application, we next compute the per- 
centage of the benign inputs that violate at least one of the learned con- 
straints. We call such inputs atypical benign inputs. For our set of applica- 
tions, the percentage of atypical benign inputs ranges from 0% to 1.57%.

• Quality of Rectified Atypical Inputs: We evaluate the quality of the recti- 
fied atypical inputs by paying people on Amazon Mechanical Turk [1] to
evaluate their perception of the difference between 1) the output that the
application produces when given the original input and 2) the output that
the application produces when given the rectified version of the original
input. Specifically, we paid people to rank the difference on a scale from 0
to 3, with 0 indicating completely different outputs and 3 indicating no per- 
ceived difference. The average scores for over 75% of the atypical inputs
are greater than 2.5, indicating that Mechanical Turk workers perceive the
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outputs for the original and rectified inputs to be very close. 
• Security Evaluation: We verified that the rectified versions of malicious 

inputs for each of these applications were processed correctly by the appli- 
cation. 

• Manual Code Analysis: For each of the malicious inputs, we manually 
identify the root cause of the vulnerability that the malicious input ex- 
ploited. We then examined the set of learned constraints and verified that 
if an input satisfies the constraints, then it will not be able to exploit the 
vulnerabilities. 

 
 

4.6 Understanding Rectification Effects 
 

We examined the original and rectified images or videos for all test input files 
that the rectifier modified. All of these files are available at: 

https://sites.google.com/site/inputrectification/home 

For the majority of rectified inputs (83 out of 110 inputs), the original and recti- 
fied images or videos appear identical. The average Mechanical Turk rating for 
such images or videos was between 2.5 and 3.0. We attribute this phenomenon 
to the fact that the rectifier often modifies fields (such as the name of the author 
of the file) that are not relevant to the core functionality of the application and 
therefore do not visibly change the image or video presented to the user. The 
application must nevertheless parse and process these fields to obtain the desir- 
able data in the input file. Furthermore, since these fields are often viewed as 
tangential to the primary purpose of the application, the code that parses them 
may be less extensively tested and therefore more likely to contain errors. 

Figure 2, 3 and 4 show examples of image files that are visibly changed by rec- 
tification. For some of the rectified image inputs (8 of 53 image inputs), the 
rectifier truncates part of the image, leaving a strip along the bottom of the pic- 
ture (see Figure 2). For the remaining inputs (19 of 110), the rectifier changes 
fields that control various aspects of core application functionality, for example, 
the alignment between pixels and the image size (see Figure 3), the color of the 
image (see Figure 4), or interactive aspects of videos. The average Mechanical 
Turk rating for such images or videos varied depending on the severity of the 
effect. In all cases the application was able to successfully process the rectified 
inputs without error to present the remaining data to the user. 
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(a) The original image 

(b) The rectified image 

Figure 4: An example image whose color is changed by the rectification. 
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4.7 Contributions 
 

We make the following contributions: 

• Basic Concept: We propose a novel technique for dealing with anomalous 
and potentially malicious inputs, namely, automatic input rectification, and 
an prototype implementation, SOAP, which demonstrates the effectiveness 
of the technique. 

• Constraint Inference: We show how to use dynamic taint analysis and a 
constraint inference algorithm to automatically infer safety constraints. 
This constraint inference algorithm operates correctly to infer correlated 
constraints for hierarchically structured input files with nested fields. 

• Rectification Algorithm: We present an input rectification algorithm that 
systematically enforces safety constraints on inputs while preserving as 
much of the benign part of the input as possible. Because it is capable of 
enforcing correlated constraints associated with nested input fields, this 
algorithm is capable of rectifying hierarchically structured input files. 

 
 

4.8 Motivating Example 
 

Figure 5 presents source code from Dillo 2.1, a lightweight open source web 
browser. Dillo uses libpng to process PNG files. The libpng callback function 
Png_datainfo_callback() shown in Figure 5 is called when Dillo starts to load 
a PNG file. The function contains an integer overflow bug at line 20, where 
the multiplication calculates the size of the image buffer allocated for future 
callbacks. Because png→rowbytes is proportional to the image width, arith- 
metic integer overflow will occur when opening a PNG image with maliciously 
large width and height values. This error causes Dillo to allocate a significantly 
smaller buffer than required. 

Dillo developers are well aware of the potential for overflow errors. In fact, the 
code contains a check of the image size at lines 10-11 to block large images. Un- 
fortunately, their bound check has a similar integer overflow problem. Specific 
large width and height values can also cause an overflow at line 10, and thus 
bypass the check. To nullify the above Dillo error, SOAP performs following 
steps: 

• Understand Input Format: SOAP first parses a PNG image file into a 
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1 //Dillo’s libpng callback 
2 static void 
3 Png_datainfo_callback(png_structp png_ptr, ...) 
4 { 
5 DilloPng *png; 
6 ... 
7 png = png_get_progressive_ptr(png_ptr); 
8 ... 
9 /* check max image size */ 

10 if (abs(png→width*png→height) >
11 IMAGE_MAX_W * IMAGE_MAX_H) { 
12 ... 
13 Png_error_handling(png_ptr, "Aborting..."); 
14 ... 
15 } 
16 ... 

17 png→rowbytes = png_get_rowbytes(png_ptr, info_ptr); 
18 ... 
19 png→image_data = (uchar_t *) dMalloc( 

20 png→rowbytes * png→height); 
21 ... 
22 } 

Figure 5: The code snippet of Dillo libpng callback (png.c). Highlighted code is 
the root cause of the overflow bug. 

Figure 6: The architecture of automatic input rectification system. 
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collection of input fields (as shown in Figure 7), so that SOAP knows 
which input bytes in the PNG image file correspond to the image width 
and height in the above example. 

• Identify Critical Fields: SOAP monitors the execution of Dillo to de- 
termine that values in the image width and height fields flow into the 
variables png→width and png→height. These two variables influence 
a memory allocation statement at lines 19-20. Thus SOAP marks width 
and height in PNG images as critical fields, which can potentially cause 
dangerous overflow. 

• Infer Constraints: SOAP next infers constraints over the critical fields. 
Specifically, SOAP processes the benign training PNG images to use the 
maximum image width and height values that appear in these inputs as 
their upper bounds. Figure 8 presents more examples of constraints for 
PNG images. 

• Rectify Atypical Inputs: When it encounters an atypical input whose 
width or length fields are larger than the inferred bound, SOAP enforces 
the bound by changing the field to the inferred bound. Note that such 
changes may, in turn, cause other constraints (such as the length of another 
field involved in a correlated relation with the modified field) to be vio- 
lated. SOAP therefore rectifies violated constraints until all constraints are 
satisfied. 

Both critical field identification and constraint inference are done offline. Once 
SOAP generates safety constraints for the PNG format, it can automatically 
rectify new incoming PNG images. 

 
 

4.9 Design 
 

SOAP has four components: the input parser, the execution monitor, the learn- 
ing engine, and the input rectifier. The components work together cooperatively 
to enable automatic input rectification (see Figure 6). The execution monitor and 
the learning engine together generate safety constraints offline, before the input 
rectifier is deployed: 

• Input parser: The input parser understands input formats. It transforms 
raw input files into syntactic parse trees for the remaining components to 
process. 
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• Execution Monitor: The execution monitor uses taint tracing to analyze
the execution traces of an application. It identifies critical input fields that
influence sensitive operations including memory allocations and memory
writes.

• Learning Engine: The learning engine starts with a set of benign train- 
ing inputs. It infers safety constraints based on the values of the fields in
these training inputs. Safety constraints define the comfort zone of the
application.

• Input Rectifier: The input rectifier rectifies atypical inputs to enforce
safety constraints. The rectification algorithm modifies the input iteratively
until it satisfies all constraints.

4.9.1 Input Parser 

As shown in Figure 6, the input parser transforms an arbitrary input into a gen- 
eral syntactic parse tree that can be easily consumed by the remaining compo- 
nents. In the syntactic parse tree, only leaf fields are directly associated with 
input data. Each leaf field has a type, which can be integer, string or raw bytes, 
while each non-leaf field contains several child fields which together forms a 
coarser semantic chunk. The parse tree also contains low-level specification 
information, for example, how the input file encodes these values. The input 
rectifier uses this information when modifying input fields. 

Figure 7 presents an example of a leaf field inside a parse tree for a PNG im- 
age file. The leaf field identifies the location of the data in the input file. It also 
contains a descriptor that specifies various aspects of the field, such as the value 
stored in the field, the name of the field, and the encoding information such as 
whether the value is stored in big endian or little endian form. The input rectifier 
uses this information in the descriptor when modifying the field. 

As shown in Figure 7, the field name is similar to the path name in a file system, 
which corresponds the position of the field inside the tree. Each field also stores 
additional information to help the rectifier modify the input, including the endi- 
anness, the encoding method and the offset position of corresponding bytes in 
the input. 
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Figure 7: An example of syntax parse tree. 
 

4.9.2 Execution Monitor 
 

The execution monitor is responsible for identifying the critical input fields 
that are involved in the learned constraints. Because large data fields may trig- 
ger memory buffer overflows, the execution monitor treats all variable-length 
data fields as critical. Integer fields present a more complicated scenario. Inte- 
ger fields that influence the addresses of memory writes or the values used at 
memory allocation sites (e.g., calls to malloc() and calloc()) are relevant for our 
target set of errors. Other integer fields (for example, control bits or checksums) 
may not affect relevant program actions. 

The SOAP execution monitor uses dynamic taint analysis [28, 49] to compute 
the set of critical integer fields. Specifically, SOAP considers an integer field to 
be critical if the dynamic taint analysis indicates that the value of the field may 
influence the address of memory writes or values used at memory allocation 
sites. The execution monitor uses an automated greedy algorithm to select a 
subset of the training inputs for the runs that determine the critical integer fields. 
The goal is to select a small set of inputs that 1) minimize the execution time 
required to find the integer fields and 2) together cover all of the integer fields 
that may appear in the input files. 

0000000110010000 

Value: 400 
Name:   /header/width 
Endianness:  Big-•‐endian 
… 

Original input file Parse tree 

… … … 

… 
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1 /header/width <= 1920 
2 /header/width >= 0 
3 sizebits(/text/text) <= 21112 

4 /text/size * 8 == sizebits(/text/keyword) 
5 + sizebits(/text/text) 

Figure 8: A subset of constraints generated by SOAP for PNG image files. 

The execution monitor currently tracks data dependences only. This approach 
works well for our set of applications, eliminating 58.3%-88.7% of integer fields 
from consideration. It would be possible to use a taint system that tracks control 
dependences [24] as well. 

4.9.3 Learning Engine 

The learning engine works with the parse trees of the training inputs and the 
specification of critical fields as identified by the execution monitor. It uses this 
information to infer safety constraints over critical fields (see offline training box 
in Figure 6). 

Safety Constraints: Overflow bugs are typically exploited by large data fields, 
extreme values, negative entries or inconsistencies of multiple fields. SOAP 
infers both bound constraints and length indicator constraints. Bound constraints 
are associated with individual fields, which bound values of critical integer fields 
and sizes of data fields in incoming inputs. Length indicator constraints (i.e., 
an integer field that indicates the actual length of a data field) are correlated 
constraints associated with multiple fields. 

Figure 8 presents several examples of constraints that SOAP infers for PNG 
image files. Specifically, SOAP infers upper bounds of integer fields (line 1), 
non-negativity of integer fields (line 2), upper bounds of lengths of data fields 
(line 3), and length indicator constraints between values and lengths of parse tree 
fields (lines 4-5 in Figure 8). 

These constraints enable the rectification system to eliminate extreme values 
in integer fields, overly long data fields, and inconsistencies between the spec- 
ified and actual lengths of data fields in the input. When properly inferred and 
enforced, these constraints enable the rectifier to nullify our target vulnerabilities 
in the protected programs. 

Note that once SOAP infers a set of safety constraints for one input format, it 
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may use these constraints to rectify inputs for any application that reads inputs 
in that format. This is useful when multiple different applications are vulnerable 
to the same exploit. For example, both Picasa [16] and ImageMagick [9] are 
vulnerable to the same integer overflow exploit (see Section 4.11). A single 
set of inferred constraints enables SOAP to nullify the vulnerability for both 
applications. 

Inferring Bound Constraints: SOAP infers three kinds of bound constraints: 
upper bounds of lengths of data fields, upper bounds of integer fields, and whether 
integer fields are non-negative. SOAP sets the maximum length of a data field 
that appeared in training inputs as the upper bound of its length. SOAP sets the 
maximum value of an integer field in training inputs as the upper bound of its 
value. SOAP also sets an integer field to be non-negative if it is never negative in 
all training inputs. SOAP infers all these constraints with a single traversal of the 
parse tree of each training input. 

Inferring Length Indicators: Inferring length indicator constraints is challeng- 
ing, because of the presence of nested fields in hierarchical input format. For 
example, an integer field may indicate the total length of several big fields which 
recursively enclose many sub-fields. Moreover, such constraints may appear at 
various levels in the input parse tree. 

SOAP infers a length indicator field f which is associated with the total 
length of consecutive children of the parent field of f . For instance, lines 4- 
5 in Figure 8 present a length indicator constraint. The constraint states that 
the value of “/text/size" is the total length of “/text/keyword" and 
“/text/text", which are two consecutive children of “/text". 

SOAP constraint learning algorithm first enumerates all possible field combi- 
nations for length indicator constraints, and initially assumes that all of these 
constraints are true. When processing each training input, the algorithm elimi- 
nates constraints that do not hold in the input. Our algorithm can be extended to 
infer other kinds of correlated constraints. More details and pseudo-code of our 
learning algorithm can be found in our technical report [41]. 

 
 

4.9.4 Input Rectifier 
 

Given safety constraints generated by the learning engine and a new input, the 
input rectifier rectifies the input if it violates safety constraints (see Figure 6). 
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The main challenge in designing the input rectifier is enforcing safety constraints 
while preserving as much desirable data as possible. 

Our algorithm is designed around two principles: 1) It enforces constraints only 
by modifying integer fields or truncating data fields—it does not change the 
parse tree structure of the input. 2) At each step, it finds a single violated con- 
straint and applies a minimum modification or truncation to satisfy the violated 
constraint. 

Nested input fields further complicate rectification, because changing one field 
may cause the file to violate correlated constraints associated with enclosing or 
enclosed fields at other levels. Thus our algorithm must iteratively continue the 
rectification process until there are no more violated constraints. In our exper- 
iment, SOAP enforces as many as five correlated constraints on some rectified 
input files. 

Our algorithm has a main loop that iteratively checks the input against learned 
constraints. The main loop exits when the input no longer violates any safety 
constraints. At each iteration, it applies various rectification actions depending 
on the violated constraints: 

• Upper bounds of integer fields: Our algorithm changes the value of an
integer field to the learned upper bound, if the input violates the upper
bound constraint of the field.

• Non-negativities of integer fields: Our algorithm changes the value of an
integer field to 0, if the input violates the non-negative constraint of the
field.

• Length upper bounds of data fields: Our algorithm truncates a data field
to its length upper bound, if the input violates the length upper bound
constraint of the data field.

• Length indicator constraints: Our algorithm changes the value of the
length indicator field to the actual length of the data field, if the value is
greater than the actual length. Our algorithm truncates the data fields to
the length indicated by the corresponding integer field, if the data is longer
than the indicated length. Note that the length indicator constraints may be
violated due to previous fixes for other constraints. Our algorithm cannot
increase the value of the length indicator field or increase the length of the
data field here, which will roll back previous fixes.

Note that, because the absolute values of integer fields and the lengths of data 
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fields always decrease at each iteration, this algorithm will always terminate. 
Note also that, because the algorithm truncates a minimum amount of data each 
iteration, the algorithm attempts to minimize the total amount of discarded data. 
More details and pseudo-code of the rectification algorithm can be found in our 
technical report [41]. 

Checksum: SOAP appropriately updates checksums after the rectification. 
SOAP currently relies on the input parser to identify the fields that store check- 
sums and the method used to compute checksums. After the rectification algo- 
rithm terminates, SOAP calculates the new checksums and appropriately updates 
checksum fields. It is also possible to use an more automatic checksum repair 
technique [56]. 

 
 

4.10 Implementation 
 

The SOAP learning engine and input rectifier are implemented in Python. The 
execution monitor is implemented in C based on Valgrind [47], a dynamic binary 
instrumentation framework. The input parser is implemented with Hachoir [8], 
a manually maintained Python library for parsing binary streams in various 
formats. SOAP is able to process any file format that Hachoir supports. Because 
SOAP implements an extensible framework, it can work with additional parser 
components that allow to support other input formats. 

 
 

4.11 Quantitative Evaluation 
 

We next present a quantitative evaluation of SOAP using five popular media 
applications. Specifically, the following questions drive our evaluation: 

1. Is SOAP effective in nullifying errors? 

2. How much desirable data does rectification preserve? 

3. How does the amount of training inputs affect SOAP’s ability to preserve 
desirable data? 

Applications and Errors: We use SOAP to rectify inputs for five applications: 
Swfdec 0.5.5 (a shockwave player) [18], Dillo 2.1 (a lightweight browser) [4], 
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Application Sources Fault Format Position Related constraints 
Swfdec Buzzfuzz X11 crash SWF XCreatePixMap /rect/xmax ≤ 57600 

/rect/ymax ≤ 51000 
Swfdec Buzzfuzz overflow/crash SWF jpeg.c:192 /sub jpeg/.../width ≤ 6020 

/sub jpeg/.../height ≤ 2351 
Dillo CVE-2009-2294 overflow/crash PNG png.c:142 

png.c:203 
/header/width ≤ 1920 
/header/height ≤ 1080 

ImageMagick CVE-2009-1882 overflow/crash JPEG,TIFF xwindow.c:5619 /ifd[..]/img_width/value ≤ 14764 
/ifd[..]/img_height/value ≤ 24576 

/start_frame/content/width ≤ 15941 
/start_frame/content/height ≤ 29803 

Picasa TaintScope overflow/crash JPEG,TIFF N/A 

VLC CVE-2008-2430 overflow/crash WAV wav.c:147 /format/size ≤ 150 

Figure 9: SOAP result summary 

Rectification Statistics Running Time 
Inp. App. Train Test Field (Distinct) Rectified Avg. Ploss Mean Parse Rect. Per field 

SWF Swfdec 3620 3620 5550.2 (98.17) 57 (1.57%) N/A 531ms 443ms 88ms 0.096ms 
PNG Dillo 1496 1497 306.8 (32.3) 0 (0%) 0% 23ms 19ms 4ms 0.075ms 

JPEG IMK, Picasa 3025 3024 298.2 (75.5) 42 (1.39%) 0.08% 24ms 21ms 3ms 0.080ms 
TIFF IMK, Picasa 870 872 333.5 (84.5) 11 (1.26%) 0.50% 31ms 26ms 5ms 0.093ms 
WAV VLC 5488 5488 17.1 (16.8) 11 (0.20%) 0% 1.5ms 1.3ms 0.2ms 0.088ms 

Figure 10: Benchmarks and numerical results of SOAP experiment 

ImageMagick 6.5.2-8 (an image processing toolbox) [9], Google Picasa 3.5 (a 
photo managing application) [16], and VLC 0.8.6h (a media player) [21]. 

Figure 9 presents a description of each error in each application. In sum, all of 
these applications consume inputs that (if specifically crafted) may cause the 
applications to incorrectly allocate memory or perform an invalid memory 
access. The input file formats for these errors are the SWF Shockwave Flash 
format; the PNG, JPEG, and TIF image formats; and the WAV sound format. 

Malicious inputs: We obtained six input files from CVE database [2], Buzzfuzz 
project [35] and TaintScope project [56]. Each input targets a distinct error (see 
Figure 9) in at least one of these applications. 

Benign inputs: We implemented a web crawler to collect input files for each for- 
mat (see Figure 10 for the number of collected inputs for each input format). Our 
web crawler uses Google’s search interface to acquire a list of pages that contain 
at least one link to a file of a specified format (e.g., SWF, JPEG, or WAV). The 
crawler then downloads each file linked within each page. We verified that all of 
these inputs are benign, i.e., the corresponding applications successfully pro- 
cessed these inputs. For each format, we randomly partitioned these inputs into 
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two sets, the training set and the test set (see Figure 10). 
 
 

4.11.1 Nullifying Vulnerabilities 
 

We next evaluate the effectiveness of SOAP in nullifying six vulnerabilities in 
the benchmark applications (see Figure 9). We first applied the trained SOAP 
rectifier to the obtained malicious inputs. The rectifier detected that all of these 
inputs violated at least one safety constraint. It rectified all violated constraints 
to produce six corresponding rectified inputs. We verified that the applications 
processed the rectified inputs without error and none of the rectified inputs ex- 
ploited the vulnerabilities. We next discuss the interactions between the inputs 
and the root cause of each vulnerability. 

Flash video: The root cause of the X11 crash error in Swfdec is a failure to 
check for large Swfdec window sizes as specified in the input file. If this window 
size is very large, the X11 library will allocate an extremely large buffer for the 
window and Swfdec will eventually crash. SOAP nullifies this error by enforcing 
the constraints that /rect/xmax ≤ 57600 and /rect/ymax ≤ 51000, which limit 
the window to a size that Swfdec can handle. In this way, SOAP ensures that no 
rectified input will be able to exploit this error in Swfdec. 

The integer overflow bug in Swfdec occurs when Swfdec calculates the required 
size of the memory buffer for JPEG images embedded within the SWF file. 
If the SWF input file contains a JPEG image with abnormally large specified 
width and height values, this calculation will overflow and Swfdec will allocate 
a buffer significantly smaller than the required size. When SOAP enforces the 
learned safety constraints, it nullifies the error by limiting the size of the embed- 
ded image. No rectified input will be able to exploit this error. 

Image: Errors in Dillo, ImageMagick and Picasa have similar root causes. A 
large PNG image with crafted width and height can exploit the integer over- 
flow vulnerability in Dillo (see Section 4.8). The same malicious JPEG and 
TIFF images can exploit vulnerabilities in both ImageMagick and Picasa Photo 
Viewer. ImageMagick does not check the size of images when allocating an 
image buffer for display at magick/xwindow.c:5619 in function XMakeImage(). 
Picasa Photo Viewer also mishandles large image files [56]. By enforcing the 
safety constraints, SOAP limits the size of input images and nullifies these vul- 
nerabilities. 
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Sound: VLC has an overflow vulnerability when processing the format chunk of 
a WAV file. The integer field /format/size specifies the size of the format chunk 
(which is less than 150 in typical WAV files). VLC allocates a memory buffer to 
hold the format chunk with the size of the buffer equal to the value of the field 
/format/size plus two. A malicious input with a large value (such as 0xfffffffe) 
in this field can exploit the overflow vulnerability. By enforcing the constraint 
/format/size ≤ 150, SOAP limits the size of the format chunk in WAV file and 
nullifies this vulnerability. 

These results indicate that SOAP effectively nullifies all six vulnerabilities. Our 
inspection of the source code indicates that the inferred safety constraints nullify 
the root causes of all of the vulnerabilities so that no input, after rectification, can 
exploit the vulnerabilities. 

4.11.2 Data Loss 

We next compute a quantitative measure of the effect of rectification on data 
loss. For each input format, we first apply the SOAP rectifier to the test inputs. 
We report the average data loss percentage of all test inputs for each format. We 
use the following formula to compute the data loss percentage of each rectified 
input: 

Ploss = 
Dlossi

Dtot i 

Dtoti  measures the amount of desirable data before rectification and Dlossi  mea- 
sures the amount of desirable data lost in the rectification process. For JPEG, 
TIFF and PNG files, Dtoti  is the number of pixels in the image and Dlossi  is the 
number of changed pixels after rectification. For WAV files, Dtoti  is the num- 
ber of frames in the sound file and Dlossi  is the number of changed frames after 
rectification. Because SWF files typically contain interactive content such as 
animations and dynamic objects that respond to user inputs, we did not attempt 
to develop a corresponding metric for these files. 

Result Interpretation: Figure 10 presents rectification results of the test inputs 
of each input format. First, note that the vast majority of the test inputs satisfy all 
of the learned constraints and are therefore left unchanged by the rectifier. Note 
also that both PNG and WAV have zero desirable data loss — PNG because the 
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Figure 11: Average data loss percentage curves under different sizes of training 
 

rectifier did not modify any test inputs, WAV because the modifications did not 
affect the desirable data. For JPEG and TIFF, the average desirable data loss is 
less than 0.5%. 

One of the reasons that the desirable data loss numbers are so small is that rectifi- 
cations often change fields (such as the name of the author of the data file or the 
software package that created the data file) that do not affect the output presented 
to the user. The application must nevertheless parse and process these fields to 
obtain the desirable data in the input file. 

 
 

4.11.3 Size of Training Input Set 
 

We next investigate how the size of the training input set affects the effectiveness 
of the rectification. Intuitively, we expect that using less training inputs will 
produce more restrictive constraints which, in turn, cause more data loss in the 
rectification. For each format, we incrementally increase the size of the training 
input set and record the data loss percentage on the test inputs. At each step, 
we increase the size of training input by 200. Figure 11 presents the curves of 
the average data loss percentage of the test inputs of the different formats as the 
sizes of the training input sets change. 

As expected, the curves initially drop rapidly, then approach a limit as the train- 
ing set sizes become large. Note that the PNG and WAV curves converge more 
rapidly than the TIFF and JPEG curves. We attribute this phenomenon to the fact 
that the PNG and WAV formats are simpler than the TIFF and JPEG formats (see 
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Figure 10 for the number of semantically distinct fields of each format). 

4.11.4 Overhead 

We next evaluate the overhead introduced by SOAP. Figure 10 presents the 
average running time of the SOAP rectifier for processing the test inputs of each 
file format. All times are measured on an Intel 3.33GHz 6-core machine with 
SOAP running on only one core. 

The results show that the majority of the execution time is incurred in the Ha- 
choir parsing library, with the execution time per field roughly constant across 
the input file formats (so SWF files take longer to parse because they have signif- 
icantly more fields than other kinds of files). We believe that users will find these 
rectification overheads negligible if not imperceptible during interactive use. 
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5 Sound Input Filter Generation 

Many security exploits target software errors in deployed applications.  One gen- 
eral approach to nullifying vulnerabilities is to deploy input filters that discard 
inputs that may trigger the errors. 

Many previous filter generation systems are reactive [29, 30, 32, 48, 58] — they 
start with an observed exploit that targets a specific vulnerability, and then an- 
alyze the path to that vulnerability to obtain a filter that discards potentially 
malicious inputs that may exploit that path (and, in some cases, related paths 
that may lead to the vulnerability). Drawbacks include incomplete coverage 
(these techniques typically leave some paths to the vulnerability uncovered) and 
systems that are not protected until they are attacked. 

We present a new proactive system, SIFT, for generating filters that discard in- 
puts that may cause integer overflow errors at memory allocation and block copy 
sites. Unlike previous reactive systems, SIFT proactively analyzes the program 
before it executes to generate filters that take all execution paths into considera- 
tion. SIFT can therefore nullify exploits that target unknown vulnerabilities (i.e., 
zero-day attacks). 

Property Checker 

Figure 12: The SIFT architecture. 

5.1 Static Analysis 

The core of our technique is an interprocedural, demand-driven, backward static 
analysis that, given an integer expression e at a specified program point, prop- 
agates the expression backwards against the control flow until it has computed a 
symbolic expression set that includes all expressions that the application may 
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evaluate (in any execution) to obtain the value of e. The variables in these expres- 
sions represent the values of input fields. In effect, the symbolic expression set 
captures all of the possible computations that the program may perform on the 
input values to obtain the value of e. 

A key challenge is that, to successfully extract effective symbolic expression 
sets, the analysis must reason precisely about interprocedural computations that 
use pointers to compute and manipulate values derived from input fields. Our 
analysis meets this challenge by deploying a novel combination of techniques 
including 1) a novel interprocedural weakest precondition analysis that works 
with symbolic representations of input fields and values accessed via pointers 
(including input fields read in loops and values accessed via pointers in loops), 
2) a symbolic expression normalization algorithm that enables our loop invari- 
ant inference algorithm to successfully analyze loops that manipulate values 
derived from input fields or pointers, and 3) an alias analysis that ensures that 
the derived symbolic expressions correctly characterize the values that the pro- 
gram computes (including values stored in one procedure, then loaded in another 
procedure). 

As is standard in the field, the alias analysis is designed to work with programs 
that do not access uninitialized or out of bounds memory. Our analysis there- 
fore comes with the following soundness guarantee. If an input passes the filter 
for a given critical expression e, the input field annotations are correct (see Sec- 
tion 7.3), and the program has not yet accessed uninitialized or out of bounds 
memory when the program evaluates e, then no integer overflow occurs during 
the evaluation of e (including the evaluations of intermediate expressions that 
contribute to the final value of e). 

5.2 SIFT Usage Model 

Figure 12 presents the architecture of SIFT. This architecture is designed to 
support the following usage model: 

Module Identification. Starting with an application that is designed to process 
inputs presented in one or more input formats, the developer identifies the mod- 
ules within the application that process inputs of interest. SIFT will analyze 
these modules to generate an input filter for the inputs that these modules pro- 
cess. 
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Input Statement Annotation. The developer annotates the relevant input state- 
ments in the source code of the modules to identify the input field that each input 
statement reads. 

Critical Site Identification. SIFT scans the modules to find all critical sites 
(currently, memory allocation and block copy sites). Each critical site has a 
critical expression that determines the size of the allocated or copied block of 
memory. The generated input filter will discard inputs that may trigger an integer 
overflow error during the computation of the value of the critical expression. 

Static Analysis. For each critical expression, SIFT uses a demand-driven back- 
wards static program analysis to automatically derive the corresponding symbolic 
expression set. Each expression in this set specifies, as a function of the input 
fields, how the value of the critical expression is computed along one of the pro- 
gram paths to the corresponding critical site. 

Input Parser Acquisition. The developer obtains (typically from open-source 
parser repositories such as Hachoir [8]) a parser for the desired input format. 
This parser groups the input bit stream into input fields, then makes these fields 
available via a standard API. 

Filter Generation. SIFT uses the input parser and symbolic expression sets to 
automatically generate the input filter. When presented with an input, the filter 
reads the fields of the input and, for each symbolic expression, determines if an 
integer overflow may occur when the expression is evaluated. If so, the filter 
discards the input. Otherwise, it passes the input along to the application. 

The generated filters can be deployed anywhere along the network path from the 
input source to the application that ultimately processes the input. 

 
 

5.3 Experimental Results 
 

We used SIFT to generate input filters for modules in five real-world applica- 
tions: VLC 0.8.6h [21] (a network media player), Dillo 2.1 [4] (a lightweight 
web browser), Swfdec 0.5.5 [18] (a flash video player), Swftools 0.9.1 [19] 
(SWF manipulation and generation utilities), and GIMP 2.8.0 [6] (an image 
manipulation application). Together, the analyzed modules contain 58 critical 
memory allocation and block copy sites. SIFT successfully generated filters for 
52 of these 58 critical sites (SIFT’s static analysis was unable to derive symbolic 
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expression sets for the remaining six critical sites, see Section 5.8.2 for more 
details). These applications contain six integer overflow vulnerabilities at their 
critical sites. SIFT’s filters nullify all of these vulnerabilities. 

Analysis and Filter Generation Time. We configured SIFT to analyze all crit- 
ical sites in the analyzed modules, then generate a single, high-performance 
composite filter that checks for integer overflow errors at all of the sites. The 
maximum time required to analyze all of the sites and generate the composite 
filter was less than a second for each benchmark application. 

False Positive Evaluation. We used a web crawler to obtain a set of least 6000 
real-world inputs for each application (for a total of 62895 input files). We found 
no false positives — the corresponding composite filters accept all of the input 
files in this test set. 

Filter Performance. We measured the composite filter execution time for each 
of the 62895 input files in our test set. The average time required to read and 
filter each input was at most 16 milliseconds, with this time dominated by the 
time required to read in the input file. 

5.4 Contributions 

This paper makes the following contributions: 

• SIFT: We present SIFT, a proactive filter generation system for nullify- 
ing integer overflow vulnerabilities. SIFT scans modules to find critical
memory allocation and block copy sites, statically analyzes the code to
automatically derive symbolic expression sets that characterize how the ap- 
plication may compute the sizes of the allocated or copied memory blocks,
and generates input filters that discard inputs that may trigger integer over- 
flow errors in the evaluation of these expressions.

• Static Analysis: We present a new static analysis that automatically de- 
rives symbolic expressions that specify, as a function of the input fields,
how the values of critical expressions are computed along the various pos- 
sible execution paths to the corresponding critical site.

• Experimental Results: We present experimental results for SIFT on mod- 
ules from five applications (VLC 0.8.6h, Dillo 2.1, Swfdec 0.5.5, Swftools
0.9.1, and GIMP 2.8.0). SIFT generates input filters that nullify integer

32
Approved for public release; distribution unlimited.



 
 

overflow vulnerabilities that may occur at 52 of the 58 memory alloca- 
tion or block copy sites, including six known integer overflow errors. The 
filters exhibit no false positives when applied to 62895 real-world inputs 
downloaded from various sources on the Internet. The analysis and com- 
posite filter generation times are all less than a second. The composite 
filters execute in at most an average of 16 milliseconds per input, with the 
majority of the time devoted to reading in the input. 

These contributions enable SIFT to proactively generate and deploy efficient 
input filters that nullify potentially unknown integer overflow vulnerabilities. We 
focus on memory allocation and block copy sites because these sites are often 
the target of attacks (in part because integer overflow errors at these sites often 
enable subsequent buffer overflow/code injection attacks). 

 
 

5.5 Example 
 

We next present an example that illustrates how siftname nullifies an integer 
overflow vulnerability in Swfdec 0.5.5, an open source shockwave flash player. 

Figure 13 presents (simplified) source code from Swfdec. When Swfdec opens 
an SWF file with embedded JPEG images, it calls jpeg_decoder_decode() 
(line 1 in Figure 13) to decode each JPEG image in the file. This function in turn 
calls the function jpeg_decoder_start_of_frame() (line 7) to read the image 
metadata and the function jpeg_decoder_init_decoder() (line 22) to allocate 
memory buffers for the JPEG image. 

There is an integer overflow vulnerability at lines 43-47 where Swfdec calculates 
the size of the buffer for a JPEG image as: 
rowstride * (dec->height_block * 8 * max_v_sample / 
dec->components[i].v_subsample) 

 

At this program point, rowstride equals: 

(jpeg_width + 8 * max_h_sample - 1) / (8 * max_h_sample) 
* 8 * max_h_sample / (max_h_sample / h_sample) 

while the rest of the expression equals 

(jpeg_height + 8 * max_v_sample - 1) / (8 * max_v_sample) 
* 8 * max_v_sample / (max_v_sample / v_sample) 
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1 int jpeg_decoder_decode(JpegDecoder *dec) { 
2 ... 
3 jpeg_decoder_start_of_frame(dec, ...); 
4 jpeg_decoder_init_decoder (dec); 
5 ... 
6 } 
7 void jpeg_decoder_start_of_frame(JpegDecoder*dec){ 
8 ... 
9 dec->height = jpeg_bits_get_u16_be (bits); 

10 /* dec->height = SIFT_input("jpeg_height", 16);*/ 
11 dec->width = jpeg_bits_get_u16_be (bits); 
12 /* dec->width = SIFT_input("jpeg_width", 16); */ 
13 for (i = 0; i < dec->n_components; i++) { 
14 dec->components[i].h_sample =getbits(bits, 4); 
15 /* dec->components[i].h_sample = 
16 SIFT_input("h_sample", 4); */ 
17 dec->components[i].v_sample =getbits(bits, 4); 
18 /* dec->components[i].v_sample = 
19 SIFT_input("v_sample", 4); */ 
20 } 
21 } 
22 void jpeg_decoder_init_decoder(JpegDecoder*dec){ 
23 int max_h_sample = 0; 
24 int max_v_sample = 0; 
25 int i; 
26 for (i=0; i < dec->n_components; i++) { 
27 max_h_sample = MAX(max_h_sample, 
28 dec->components[i].h_sample); 
29 max_v_sample = MAX(max_v_sample, 
30 dec->components[i].v_sample); 
31 } 
32 dec->width_blocks=(dec->width+8*max_h_sample-1) 
33 / (8*max_h_sample); 
34 dec->height_blocks=(dec->height+8*max_v_sample-1) 
35 / (8*max_v_sample); 
36 for (i = 0; i < dec->n_components; i++) { 
37 int rowstride; 
38 int image_size; 
39 dec->components[i].h_subsample=max_h_sample / 
40 dec->components[i].h_sample; 
41 dec->components[i].v_subsample=max_v_sample / 
42 dec->components[i].v_sample; 
43 rowstride=dec->width_blocks * 8 * max_h_sample / 
44 dec->components[i].h_subsample; 
45 image_size=rowstride * (dec->height_blocks * 8 * 
46 max_v_sample / dec->components[i].v_subsample); 
47 dec->components[i].image = malloc (image_size); 
48 } 
49 } 

Figure 13: Simplified Swfdec source code. Input statement annotations appear in 
comments. 

where jpeg_height is the 16-bit height input field value that Swfdec reads at line 
9 and jpeg_width is the 16-bit width input field value that Swfdec reads at line 
11. h_sample is one of the horizontal sampling factor values that Swfdec reads
at line 14, while max_h_sample is the maximum horizontal sampling factor 
value. v_sample is one of the vertical sampling factor values that Swfdec reads 
at line 17, while max_v_sample is the maximum vertical sampling factor value. 
Malicious inputs with specifically crafted values in these input fields can cause 
the image buffer size calculation to overflow. In this case Swfdec allocates an 
image buffer that is smaller than required and eventually writes beyond the end 
of the allocated buffer. 
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S : {((sext(jpeg_width[16],32)+8[32] ×sext(h_sample1[4],32)− 1[32])/(8[32] × 
sext(h_sample1[4],32×8[32] ×sext(h_sample1[4],32))/(sext(h_sample1[4], 

32)/sext(h_sample2[4],32))×((sext(j peg_height[16],32)+8[32] ×sext(v_sample1[4],32)− 
1[32])/(8[32] ×sext(v_sample1[4],32×8[32] ×sext(v_sample1[4],32))/(sext(v_sample1[4], 

32)/sext(v_sample2[4],32))} 
Figure 14:  The symbolic expression set S for the Swfdec example. Each expres- 
sion of S is a bit vector expression. The superscript indicates the bit width of each 
expression atom. “sext(v, w)" is the signed extension operation that trans- forms 
the value v to the bit width w. 

 
The loop at lines 13-20 reads an array of horizontal and vertical factor values. 
Swfdec computes the maximum values of these factors in the loop at lines 26- 
31. It then uses these values to compute the size of the allocated buffer at each 
iteration in the loop (lines 36-48). 

Analysis Challenges: This example highlights several challenges that SIFT must 
overcome to successfully analyze and generate a filter for this program. First, the 
expression for the size of the buffer uses pointers to access values derived from 
input fields. To overcome this challenge, SIFT uses an alias analy- sis [40] to 
reason precisely about expressions with pointers. 

Second, the memory allocation site (line 47) occurs in a loop, with the size ex- 
pression referencing input values read in a different loop (lines 13-19). Different 
instances of the same input field (h_sample and v_sample) are used to compute 
(potentially different) sizes for different blocks of memory allocated at the same 
site. To reason precisely about these different instances, the analysis works with an 
abstraction that materializes, on demand, abstract representatives of accessed input 
field and computed values (see Section 5.6). To successfully analyze the loop, the 
analysis uses a new loop invariant synthesis algorithm (which exploits a new 
expression normalization technique to reach a fixed point). 

Finally, Swfdec reads the input fields (lines 14 and 17) and computes the size of 
the allocated memory block (lines 45-46) in different procedures. SIFT therefore 
uses an interprocedural analysis that propagates symbolic expressions across 
procedure boundaries to obtain precise symbolic expression sets. 

We next describe how 
siftname generates a sound input filter to nullify this integer overflow error. 
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Source Code Annotations: SIFT provides a declarative specification inter 
face that enables the developer to specify which statements read which in- put 
fields. In this example, the developer specifies that the application reads the 
input fields jpeg_height, jpeg_width, h_sample, and v_sample at lines 10, 
12, 15-16, and 18-19 in Figure 13. SIFT uses this specification to map the 
variables dec->height, dec->width, dec->components[i].h_sample, and dec- 
>components[i].v_sample at lines 9, 11, 14, and 17 to the corresponding input 
field values. The field names h_sample and v_sample map to two arrays of 
input fields that Swfdec reads in the loop at lines 14 and 17. 

Compute Symbolic Expression Set: SIFT uses a demand-driven, interproce- 
dural, backward static analysis to compute the symbolic expression set S in 
Figure 14. S enumerates all of the expressions that Swfdec may evaluate, in any 
execution, to obtain the size of the allocated buffer (lines 45-46). Each expres- 
sion is in bit vector expression form so that the expression accurately reflects the 
representation of the numbers inside the computer as fixed-length bit vectors as 
well as the semantics of arithmetic and logical operations as implemented inside 
the computer on these bit vectors. 

In Figure 14, the superscripts indicate the bit width of each expression atom. 

sext(v, w) is the signed extension operation that transforms the value v to the 
bit width w. SIFT also tracks the sign of each arithmetic operation in S. For 
simplicity, Figure 14 omits this information. SIFT soundly handles the loops 
that access the input field arrays h_sample and v_sample. The generated S re- 
flects the fact that the variable dec->components[i].h_sample and the variable 
max_h_sample might be two different elements in the input array h_sample. 
In S, h_sample1 corresponds to max_h_sample and h_sample2 corresponds to 
dec->components[i].h_sample. SIFT handles v_sample similarly. 

S includes all intermediate expressions evaluated at lines 32-35 and 39-46. In 
this example, S contains only a single expression. However, if there may be mul- 
tiple execution paths, SIFT generates a symbolic expression set S with multiple 
expressions that cover all paths. 

Generate Input Filter: Starting with the symbolic expression set S, SIFT gen- 
erates an input filter that discards any input that may trigger an integer overflow 
when evaluating any expression in S (including all subexpressions). The gener- 
ated filter extracts all instances of the input fields jpeg_height, jpeg_width, 
h_sample, and v_sample (these are the input fields that appear in S) from 
an incoming input. It then iterates over all combinations of pairs of the input 
fields h_sample and v_sample to consider all possible bindings of h_sample1, 
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f unc:= proc(a1,..., ak) { s;  return  vret ;  } 
s:= v  = read( f ) | v  = c  | v  = v1   op v2   | 

if (v) s1   else s2   | while (v) {s1} | 
s1; s2   | v  = ∗ p  <label> | 
∗ p  = v  <label> | v  = call proc  v1   ... vk 

 

f ∈ Fields v, vi, ai ∈  Vars 
p ∈ Pointers c ∈ Int 

Figure 15: The Core Programming Language 
 

h_sample2, v_sample1, and v_sample2 in S. For each binding, it checks the en- 
tire evaluation of S (including the evaluation of all subexpressions) for overflow. 
If there is no overflow in any evaluation, the filter accepts the input, otherwise it 
rejects the input. 

 
 

5.6 Static Analysis 
 

Core Language: Figure 15 presents the core language that we use to present the 
analysis. As is standard in the field, the analysis runs after the program anal- 
ysis infrastructure (SIFT uses LLVM [12]) has lowered the program represen- 
tation so that 1) nested expressions are converted into sequences of statements 
of the form v = v1 op v2 (where v, v1, and v2 are either non-aliased variables or 
LLVM-generated temporaries) and 2) all accesses to potentially aliased memory 
locations occur in load or store statements of the form v = ∗ p <label> or ∗ p = v 
<label> (the analysis uses the labels to materialize abstract representatives for 
accessed memory locations). 

A statement of the form “v = read( f )” reads a value from an input field f . Be- 
cause the input may contain multiple instances of the field f , different executions 
of the statement may return different values. For example, the loop at lines 14- 
17 in Figure 13 reads multiple instances of the h_sample and v_sample input 
fields. 

Because it works with a lowered representation, our static analysis starts with a 
variable v at a critical program point. It then propagates v backward against the 
flow of control, first within the procedure that contains the critical program 
point, then up the call graph to the program entry point. In this way the analysis 
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op := + | − | ∗ | / | ... 
id := 1 | 2 | 3 | 4 | ...
Atom := c | v | f (id) | label(id)
Expr := Atom | Expr op Expr
ExprSet ≡ 2Expr

Figure 16: Symbolic Expression Sets 

Statement s Rules 
v = c WP(v = c, S) = S[c/v] 
v = v1 opv2 WP(v = v1 opv2, S) = S[v1 opv2/v] 
v = read( f ) WP(v = read( f ),S) = S[ f (id)/v], f (id) is fresh. 
s1; s2 WP(s1; s2, S) = WP(s1,WP(s2, S)) 
i f (v) s1 elses2 WP(if (v) s1 elses2, S) = WP(s1, S) ∪ WP(s2, S) 
v = ∗ p < label > WP(v = ∗ p < label >, S) = S[label(id)/v], label(id) is fresh 
∗ p = v < label > F(∗ p = v < label >,S) = S(v,label, label1(id1))(v,label, 

label2(id2))...(v,label,S(vf,olraablelll,alabbele1l((idid1)),)...=,labeln(idn) 
appearing in S, where 

i i 
S no_alias(label,labeli) 

S[v/labeli(idi)] ∪ S  may_alias(label, labeli) 
S[v/labeli(idi))] must_alias(label,labeli) 

Figure 17: Weakest precondition analysis rules. The notation S[ea/eb] denotes  the 
symbolic expression set obtained by replacing every occurrence of eb in S with ea. 

computes an input expression set that soundly approximates how the program, 
starting with input field values f , may compute the value of v at the critical pro- gram 
point. The generated filters use the analysis results to check whether the input may 
trigger an integer overflow error in any of these computations. 

Symbolic Expression Sets: Figure 16 presents the definition of symbolic expres- sion 
sets. There are four kinds of atoms: c represents a constant, v represents the variable v, 
f (id) represents the value of an input field f (the analysis uses the 
natural number id to distinguish different instances of f ), and label(id) repre- 
sents a value returned by a load statement with the label label (the analysis uses 
the natural number id to distinguish values loaded at different executions of the load 
statement). 
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Weakest Precondition Framework: Given a series of statements s and a symbolic 
expression set S ∈ ExprSet, our analysis uses a weakest precondition anal- 
ysis to compute a symbolic expression set WP(s, S). The analysis ensures that 
if for all symbolic expressions e ∈ WP(s, S), the evaluation of e at the program 
point before s does not encounter an integer overflow error, then the evaluation 
of any expression in S at the program point after s also does not encounter an 
integer overflow error. In contrast to many program analyses, which propagate 
information forward with the flow of control, this weakest precondition analysis 
propagates information backwards against the flow of control. 

Analysis of Assignment, Conditional, and Sequence Statements: Figure 37 
presents the analysis rules for basic program statements. The analysis of as- 
signment statements replaces the assigned variable v with the assigned value (c, 
v1 op v2, or f (id), depending on the assignment statement). Here the notation 
S[ea/eb] denotes the new expression set obtained by replacing every occurrence 
of eb in S with ea. The analysis rule for input read statements materializes a new 
id to represent the read value f (id). This mechanism enables the analysis to cor- 
rectly distinguish different instances of the same input field (because different 
instances have different ids). 

The analysis of conditional statements takes the union of the symbolic expres- 
sion sets from the analysis of the true and false branches of the if statement. The 
resulting symbolic expression set correctly takes the execution of both branches 
into account. The analysis of sequences of statements propagates the symbolic 
expression set backwards through the statements in sequence. 
Analysis of Load and Store Statements: The analysis of a load statement v = 
∗ p < label > replaces the assigned variable v with a materialized abstract value 
label(id) that represents the loaded value. As for input read statements, the 
analysis uses a newly materialized id to distinguish values read on different 
executions of the load statement. 

The analysis of a store statement ∗ p = v < label > uses the alias analysis to 
appropriately match the stored value v against all loads that may return that 
value. Specifically, the analysis locates all labeli(idi) atoms in S that either may 
or must load the value v that the store statement stores into the location p. If the 
alias analysis determines that the labeli(idi) expression must load v (i.e., 
the corresponding load statement will always access the value that the store 
statement stored into location p), then the analysis of the store statement replaces 
all occurrences of labeli(idi) with v. 
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If the alias analysis determines that the labeli(idi) expression may load v (i.e., 
on some executions the corresponding load statement may load v, on others it 
may not), then the analysis produces two symbolic expression sets: one with 
labeli(idi) replaced by v (for executions in which the load statement loads v) and 
one that leaves labeli(idi) in place (for executions in which the load statement 
loads a value other than v). 

We note that, if the pointer analysis is imprecise, the expression sets may be- 
come intractably large. SIFT uses the DSA algorithm [40], a context-sensitive, 
unification-based pointer analysis. We found that, in practice, this analysis is 
precise enough to enable SIFT to efficiently analyze our benchmark applications 
(see Figure 21 in Section 5.8.2). 

Analysis of Loop Statements: The loop analysis uses fixed-point iteration to 
discover an appropriate loop invariant that correctly summarizes the effect of the 
loop (regardless of the number of iterations that it may perform). Specifically, 
the analysis of a statement while (v) {s} computes a sequence of symbolic ex- pression sets Si, where S0 = 0/ and Si = norm(WP(s, S ∪ Si− 1)). Conceptually,
each successive symbolic expression set Si captures the effect of executing an ad- 
ditional loop iteration. The analysis terminates when it reaches a fixed point (i.e., 
when it has performed n iterations such that Sn = Sn− 1). Here Sn is the discovered 
loop invariant. 
The loop analysis normalizes the analysis result WP(s, S ∪ Si− 1) after each 
iter- ation. For a symbolic expression set S = {e1,..., en}, the normalization 
of  S  is   norm(S)  =  {norm(e1),..., norm(en)},  where  norm(ei)  is  the 
normalization of 
each individual expression in S (using the algorithm presented in Figure 18). 

Normalization facilitates loop invariant discovery for loops that read input fields 
or load values via pointers. Each analysis of the loop body during the fixed point 

computation produces new materialized values f (id) and label(id) with fresh 
ids. The new materialized f (id) represent input fields that the current loop itera- 
tion reads; the new materialized label(id) represent values that the current loop 
iteration loads via pointers. The normalization algorithm appropriately renum- 
bers these ids in the new symbolic expression set so that the first appearence 
of each id is in lexicographic order. This normalization enables the analysis to 
recognize loop invariants that show up as equivalent successive analysis results 
that differ only in the materialized ids that they use to represent input fields and 
values accessed via pointers. 
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1 Input: Expression e
2 Output: Normalized expression enorm
3 

4 enorm ←e 
5 field_cnt ← {all →0} 
6 label_cnt ←{all →0} 
7 for a  in Atoms(e) do 
8 if a  is in form f (id) then 
9 nextid ← f ield_cnt( f ) + 1

10 f ield_cnt ← f ield_cnt[ f →nextid] 
11 enorm ←enorm[∗ f (nextid/ f (id)] 
12 else if a  is in form label(id) then 
13 nextid ←label_cnt(label) + 1
14 label_cnt ←label_cnt[label →nextid] 
15 enorm ←enorm[∗ label(nextid)/label(id)] 
16 end if
17 end 
18 for a  in Atoms(enorm) do 
19 if a  is in form ∗ f (id) then 
20 enorm ←enorm[ f (id)/ ∗ f (id)] 
21 else if a  is in form ∗ label(id) then 
22 enorm ←enorm[label(id)/ ∗ label(id)] 
23 end if 
24 end 

Figure 18: Normalization function norm(e). Atom(e) iterates over the atoms in 
the expression e from left to right. 

The above algorithm will reach a fixed point and terminate if it computes the 
symbolic expression set of a value that depends on at most a statically fixed 
number of values from the loop iterations. For example, our algorithm is able to 
compute the symbolic expression set of the size parameter value of the mem- 
ory allocation in Figure 13 — the value of this size parameter depends only on 
the values of jpeg_width and jpeg_height, the current values of h_sample  
and v_sample, and the maximum values of h_sample and v_sample, each of 
which comes from one previous iteration of the loop at line 26-31. 

Note that the algorithm will not reach a fixed point if it attempts to compute a 
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symbolic expression set that contains an unbounded number of values from dif- 
ferent loop iterations. For example, the algorithm will not reach a fixed point if 
it attempts to compute a symbolic expression set for the sum of a set of numbers 
computed within the loop (the sum depends on values from all loop iterations). 
To ensure termination, our current implemented algorithm terminates the anal- 
ysis and fails to generate a symbolic expression set S if it fails to reach a fixed 
point after ten iterations. 

In practice, we expect many programs may contain expressions whose values 
depend on an unbounded number of values from different loop iterations. Our 
analysis can successfully analyze such programs because it is demand driven — 
it only attempts to obtain precise symbolic representations of expressions that 
may contribute to the values of expressions in the analyzed symbolic execution 
set S (which, in our current system, are ultimately derived from expressions that 
appear at memory allocation and block copy sites). Our experimental results 
indicate that our approach is, in practice, effective for this set of expressions, 
specifically because these expressions tend to depend on at most a fixed number 
of values from loop iterations. 

Analyzing Procedure Calls: We next present the interprocedural analysis for 
procedure call sites. Given a symbolic expression set S and a function call state- 
ment v = call proc v1 ... vk that invokes a procedure proc(a1, a2,...,ak) { sb; ret 
vret }, the analysis computes WP(v = call proc v1 ... vk, S).1
Conceptually, the analysis performs two tasks. First, it replaces any occurrences 
of the procedure return value v in S (the symbolic expression set after the proce- 
dure call) with symbolic expressions that represent the values that the procedure 
may return. Second, it transforms S to reflect the effect of any store instruc- 
tions that the procedure may execute. Specifically, the analysis finds expressions 
label(id) in S that represent values that 1) the procedure may store into a loca- 
tion p that 2) the computation following the procedure may access via a load 
instruction that may access (a potentially aliased version of) p. It then replaces 
occurrences of label(id) in S with symbolic expressions that represent the corre- 
sponding values computed (and stored into p) within the procedure. 

Note that symbolic expressions derived from an analysis of the invoked proce- 
dure may contain occurrences of the formal parameters a1, ...,ak. The interpro- 

 

1 Note that because SIFT uses its underlying pointer analysis to disambiguate function 
pointers, it can analyze programs that invoke functions via function pointers. 
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n 

 

1 Input: A symbolic expression set S 
2 Output: WP(v = call  proc  v1   v2   ... vk, S), 
3 where proc  is defined as: 
4 proc(a1, a2,...,ak) { sb; ret  vret   } 
5 Where: label1(id1), label2(id2), ..., labeln(idn) 
6 are all atoms of the form label(id) 
7 that appear in S. 
8 

9 R ← 0/ 
10 ST0 ←WP(sb,{vret}) 
11 for e0  in ST0[v1/a1] ...[vn/an] do 
12 ST1 ←WP(sb,{label1(id1)}) 
13 for e1  in ST1[v1/a1] ...[vn/an] do 
14 ... 

15 STn←WP(sb,{labeln(idn)}) 
16 for en  in STn[v1/a1] ...[vn/an] do 
17 et ←make_ f resh(e0) 
18 ... 
19 et ←make_ f resh(en) 
20 R←R∪ S[et/v]...[et/labeli(idi)]... 

0 i 
21 end 
22 ... 
23 end 
24 end 

25 WP(v = call  proc  v1   v2   ... vk, S) ← R 

Figure 19: Procedure Call Analysis Algorithm 
 

cedural analysis translates these symbolic expressions into the name space of 
the caller by replacing occurrences of the formal parameters a1, ..., ak with the 
corresponding actual parameters v1,...,vk from the call site. 

Figure 19 presents the algorithm for analyzing procedure calls. At line 10 the 
algorithm analyzes the procedure body sb to obtain a symbolic expression set 
WP(sb,{vret}) representing the potential return values. It then translates this 
symbolic expression set into the name space of the caller by replacing the formal 
parameters a1,...,an with the corresponding actual parameters v1,...,vn. At lines 
12 through 16 the algorithm analyzes the procedure body sb for each representa- 
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tive label1(id1), ..., labeln(idn) that appears in S to derive a symbolic expression 
set that represents the set of values that the procedure may store into locations 
represented by the corresponding abstract materialized value labeli(idi). 
At lines 11-16 the algorithm iterates over the derived symbolic expression sets. 
At line 20 it substitutes the derived expressions into S to compute the translated 
symbolic expression set R = WP(v = call procv1 ... vk, S). To appropriately 
distinguish different invocations of the procedure, the analysis creates fresh 
versions of the f (id) and label(id) in the expressions e1, ..., en before it performs 
the substitution. 

The algorithm avoids unnecessary reanalyses of the invoked procedure by caching the analysis results WP(sb,{vret}) and WP(sb{labeli(idi)}) in a table
for reuse at the analysis of other call sites that may invoke the procedure. 

Propagation to Program Entry: To derive the final symbolic expression set at 
the start of the program, the analysis propagates the current symbolic expres- 
sion set up the call tree through procedure calls until it reaches the start of the 
program. When the propagation reaches the entry of the current procedure proc, 
the algorithm uses the procedure call graph to find all call sites that may invoke 
proc.2  It then propagates the current symbolic expression set S to the callers of 
proc, appropriately translating S into the naming context of the caller by sub- 
stituting any formal parameters of proc that appear in S with the corresponding 
actual parameters from the call site. The analysis continues this propagation until 
it has traced out all paths in the call graph from the initial critical site where the 
analysis started to the program entry point. The final symbolic expression set is 
the union of the expression sets derived along all of these paths. 

5.7 Implementation 

We implemented SOAP in approximately 6000 lines of C++ code. We built the 
static analysis using the LLVM Compiler Infrastructure [12]. 

Analysis for C Programs: SOAP transforms the annotated application source 
code into the LLVM intermediate representation (IR) [12], scans the IR to iden- 
tify critical values (i.e., size parameters of memory allocation and block copy 

 

2Once again, because the analysis uses its pointer analysis to disambiguate function pointers, 
the call graph is accurate for call sites that use function pointers. 
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call sites) inside the developer specified module, and then performs the static 
analysis (see Section 5.6) for each identified critical value. 

SOAP extends the analysis described in Section 5.6 to track the bit width of each 
expression atom. It also tracks the sign of each expression atom and arithmetic 
operation and correctly handles extension and truncation operations (i.e., signed 
extension, unsigned extension, and truncation) that change the width of a bit 
vector. SOAP therefore faithfully implements the representation of integer values 
in the C program. 

By default, SIFT recognizes calls to standard C memory allocation routines 
(such as malloc, calloc, and realloc) and block copy routines (such as memcpy). 
SIFT can also be configured to recognize additional memory allocation and 
block copy routines (for example, dMalloc in Dillo). 

SOAP provides a declarative specification language that developers use to indi- 
cate which input statements read which input fields. In our current implemen- 
tation these statements appear in the source code in comments directly below 
the C statement that reads the input field. See lines 10, 12, 15-16, and 18-19 
in Figure 13 for examples that illustrate the use of the specification language 
in the Swfdec example. The SIFT annotation generator scans the comments, 
finds the input specification statements, then inserts new nodes into the LLVM 
IR that contain the specified information. Formally, this information appears as 
procedure calls of the following form: 

v = SIFT_Input("field_name", w); 

where v is a program variable that holds the value of the input field with the 
field name field_name. The width (in bits) of the input field is w. The SIFT 
static analyzer recognizes such procedure calls as specifying the correspondence 
between input fields and program variables and applies the appropriate analysis 
rule for input read statements (see Figure 37). 

The static analysis may encounter procedure calls (for example, calls to standard 
C library functions) for which the source code of the callee is not available. A 
standard way to handle this situation is to work with an annotated procedure dec- 
laration that gives the static analysis information that it can use to analyze calls 
to the procedure. If code for an invoked procedure is not available, by default 
SIFT currently synthesizes information that indicates that symbolic expressions 
are not available for the return value or for any values accessible (and therefore 
potentially stored) via procedure parameters (code following the procedure call 
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may load such values). This information enables the analysis to determine if the 
return value or values accessible via the procedure parameters may affect the an- 
alyzed symbolic expression set S. If so, SIFT does not generate a filter. Because 
SIFT is demand-driven, this mechanism enables SIFT to successfully analyze 
programs with library calls (all of our benchmark programs have such calls) as 
long as the calls do not affect the analyzed symbolic expressions. 

We attribute any residual occurrences of abstract materialized values label(id) 
in the final symbolic expression set S to imprecision in the alias analysis (such 
values would correspond to accesses to uninitialized memory) and prune any 
expressions in S that contain such values. 

Input Filter Generation: The filter operates as follows. It first uses an existing 
parser for the input format to parse the input and extract the input fields used 
in the input expression set S. Open source parsers are available for a wide of 
input file formats, including all of the formats in our experimental evaluation [8]. 
These parsers provide a standard API that enables clients to access the parsed 
input fields. 

The generated filter evaluates each expression in S by replacing each symbolic 
input variable in the expression with the corresponding concrete value from the 
parsed input. If an integer overflow may occur in the evaluation of any expres- 
sion in S, the filter discards the input and optionally raises an alarm. For input 
field arrays such as h_sample and v_sample in the Swfdec example (see Sec- 
tion 7.2), the input filter enumerates all possible combinations of concrete values. 
The filter discards the input if any combination can trigger the integer overflow 
error. 

Given multiple symbolic expression sets generated from multiple critical pro- 
gram points, SOAP can create a single efficient filter that first parses the input, 
then checks the input against all symbolic expression sets in series on the parsed 
input. This approach amortizes the overhead of reading the input (in practice, 
reading the input consumes essentially all of the time required to execute the 
filter, see Figure 22) over all of the symbolic expression set checks. 

5.8 Experimental Results 

We evaluate SIFT on modules from five open source applications: VLC 
0.8.6h [21] (a network media player), Dillo 2.1 [4] (a lightweight web browser), 
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Application Distinct Fields Relevant Fields 
VLC 25 2 
Dillo 47 3 
Swfdec 219∗ 6 
png2swf 47 4 
jpeg2swf 300 2 
GIMP 189 2 

Figure 20: The number of distinct input fields and the number of relevant input 
fields for analyzed input formats. For Swfdec the second column shows the 
number of distinct fields in embedded JPEG images in collected SWF files. 

Swfdec 0.5.5 [18] (a flash video player), Swftools 0.9.1 [19] (SWF manipulation 
and generation utilities), and GIMP 2.8.0 [6] (an image manipulation applica- 
tion). Each application uses a publicly available input format specification and 
contains at least one known integer overflow vulnerability (described in either 
the CVE database [2] or the Buzzfuzz paper [35]). All experiments were con- 
ducted on an Intel Xeon X5363 3.00GHz machine running Ubuntu 12.04. 

5.8.1 Methodology 

Input Format and Module Selection: For each application, we used SIFT to 
generate filters for the input format that triggers the known integer overflow 
vulnerability. We therefore ran SIFT on the module that processes inputs in that 
format. The generated filters nullify not only the known vulnerabilities, but also 
any integer overflow vulnerabilities at any of the 52 memory allocation or block 
copy sites in the modules for which SIFT was able to generate input expression 
sets (recall that there are 58 critical sites in these modules in total). 

Input Statement Annotation: After selecting each module, we added annota- 
tions to identify the input statements that read relevant input fields (i.e., input 
fields that may affect the values of critical expressions at memory allocation or 
block copy sites). Figure 20 presents, for each module, the total number of dis- 
tinct fields in our collected inputs for each format, the number of annotated input 
statements (in all of the modules the number of relevant fields equals the num- 
ber of annotated input statements — each relevant field is read by a single input 
statement). We note that the number of relevant fields is significantly smaller 
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Application Module # of IR Total Input 
Relev 

Inside 
Loop 

Max 
Expr. 

A 

VLC demux/wav.c 1.5k 5 3 0 2 
Dillo png.c 39.1k 4 3 3 410 

Swfdec jpeg/*.c 8.4k 22 19 2 144 
png2swf all 11.0k 21 18 18 16 
jpeg2swf all 2.5k 4 4 4 2 

GIMP file-gif-load.c 3.2k 2 2 2 2 

Figure 21:  Static Analysis and Filter Generation Results 

than the total number of distinct fields (reflecting the fact that typically only a 
relatively small number of fields in each input format may affect the sizes of 
allocated or copied memory blocks). 

The maximum amount of time required to annotate any module was approxi- mately 
half an hour (Swfdec). The total annotation time required to annotate all benchmarks, 
including Swfdec, was less than an hour. This annotation effort re- flects the fact that, 
in each input format, there are only a relatively small number of relevant input fields. 

Filter Generation and Test: We next used SIFT to generate a single composite input 
filter for each analyzed module. We then downloaded at least 6000 real- world inputs 
for each input format on the web, and ran all of the downloaded inputs through the 
generated filters. There were no false positives (the filters accepted all of the inputs). 

Vulnerability and Filter Confirmation: For each known integer overflow vul- 
nerability, we collected a test input that triggered the integer overflow. We con- 
firmed that each generated composite filter, as expected, discarded the input because 
it correctly recognized that the input would cause an integer overflow. 

5.8.2 Analysis and Filter Evaluation 

Figure 21 presents static analysis and filter generation results. This figure con- tains a 
row for each analyzed module. The first column (Application) presents the 
application name, the second column (Module) identifies the analyzed mod- ule 
within the application. The third column (# of IR) presents the number of analyzed 
statements in the LLVM intermediate representation. This number of 
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statements includes not only statements directly present in the module, but also 
statements from analyzed code in other modules invoked by the original module. 

The fourth column (Total) presents the total number of memory allocation and 
block copy sites in the analyzed module. The fifth column (Input Relevant) 
presents the number of memory allocation and block copy sites in which the size 
of the allocated or copied block depends on the values of input fields. For 
these modules, the sizes at 49 of the 58 sites depend on the values of input fields. 
The sizes at the remaining nine sites are unconditionally safe — SIFT verifies 
that they depend only on constants embedded in the program (and that there is 
no overflow when the sizes are computed from these constants). 

The sixth column (Inside Loop) presents the number of memory allocation and 
block copy sites in which the size parameter depends on variables that occurred 
inside loops. For these modules, the sizes at 29 of the 58 sites depend on loops 
relevant variables, for which SIFT needs to compute loop invariants to generate 
input filters. 

The seventh column (Max Expr. Set Size) presents, for each application module, 
the maximum number of expressions in any expression set that occurs in the 
analysis of that module. The expression sets are reasonably compact (and more 
than compact enough to enable an efficient analysis) — the maximum expression 
set size over all modules is less than 500. 

The final column (Analysis Time) presents the time required to analyze the mod- 
ule and generate a single composite filter for all of the successfully analyzed 
critical sites. The analysis times for all modules are less than a second. 

SIFT is unable to generate symbolic expression sets S for six of the 58 call sites. 
For two of these sites (one in Swfdec and one in png2swf), the two expressions 
contain subexpressions whose value depends on an unbounded number of values 
from loop iterations. To analyze such expressions, our analysis currently requires 
an upper bound on the number of loop iterations. Such an upper bound could 
be provided, for example, by additional analysis or developer annotations. The 
remaining four expressions (two in png2swf and two in jpeg2swf) depend on 
the return value from strlen(). SIFT is not currently designed to analyze such 
expressions. 

For each input format, we used a custom web crawler to locate and download at 
least 6000 inputs in that format. The web crawler starts from a Google search 
page for the file extension of the specific input format, then follows links in each 
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Application Format # of Input Average Time 
VLC WAV 10976 3ms (3ms) 
Dillo PNG 18983 16ms (16ms) 

Swfdec SWF 7240 6ms (5ms) 
png2swf PNG 18983 16ms (16ms) 
jpeg2swf JPEG 6049 4ms (4ms) 

GIMP GIF 19647 9ms (9ms) 

Figure 22: Generated Filter Results. 

search result page to download files in the correct format. 

Figure 22 presents, for each generated filter, the number of downloaded input 
files and the average time required to filter each input. We present the average 
times in the form Xms (Yms), where Xms is the average time required to filter 
an input and Yms is the average time required to read in the input (but not apply 
the integer overflow check). These data show that essentially all of the filter time 
is spent reading in the input. 

5.8.3 Vulnerability Case Studies 

In Section 7.2 we showed how SIFT handles the integer overflow vulnerability 
in Swfdec. We next investigate how SIFT handles the remaining five known 
vulnerabilities in our benchmark applications. Figure 24 presents the symbolic 
expression sets that SIFT generates for each of the five vulnerabilities in the 
analyzed modules. 

VLC The VLC wav.c module contains an integer overflow vulnerability
(CVE-2008-2430) when parsing WAV sound inputs. When VLC parses the for- 
mat chunk of a WAV input, it first reads the input field f mt_size, which indicates 
the size of the format chunk. VLC then allocates a buffer to hold the format 
chunk. A large f mt_size field value (for example, 0xfffffffe) will cause an over- 
flow to occur when VLC computes the buffer size. 

We annotate the source code to specify where the module reads the f mt_size 
input field. SIFT then analyzes the module to obtain the input expression set S 
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(Figure 24), which soundly summarizes how VLC computes the buffer size from 
input fields. 

 
 

1 // libpng main data process function. 
2 void png_process_data(png_structp png_ptr, 
3 png_infop info_ptr, ...) { 
4 ... 
5 while (png_ptr->buffer_size) { 
6 // This is a wrapper for png_push_read_chunk 
7 png_process_some_data(png_ptr, info_ptr); 
8 } 
9 } 

10 // chunk handler dispatcher 
11 void png_push_read_chunk(png_structp png_ptr, 
12 png_infop info_ptr) { 
13 if (!png_memcmp(png_ptr->chunk_name,png_IHDR,4)){ 
14 ... 
15 png_handle_IHDR(png_ptr, info_ptr, ...); 
16 } 
17 ... 
18 else if (!png_memcmp(png_ptr->chunk_name, 
19 png_IDAT, 4)) { 
20 ... 
21 // Datainfo callback is called 
22 png_push_have_info(png_ptr, info_ptr); 
23 ... 
24 } 
25 } 
26 #define PNG_ROWBYTES(pixel_bits,width)\ 
27 ((pixel_bits)>=8?\ 
28 ((width)*(((png_uint_32)(pixel_bits))>>3)):\ 
29 ((((width)*((png_uint_32)(pixel_bits)))+7)>>3)) 
30 void png_handle_IHDR(png_structp png_ptr, 
31 png_infop info_ptr, ...) { 
32 ... 
33 // read individual png fields from input buffer 
34 width = png_get_uint_31(png_ptr, buf); 
35 /* width = SIFT_input("png_width", 32); */ 
36 height = png_get_uint_31(png_ptr, buf + 4); 
37 /* height = SIFT_input("png_height", 32); */ 
38 bit_depth = buf[8]; 
39 /* bit_depth = SIFT_input("png_bitdepth", 8); */ 
40 ... 
41 png_ptr->width = width; 
42 png_ptr->height = height; 
43 png_ptr->bit_depth = (png_byte)bit_depth; 
44 ... 
45 switch (png_ptr->color_type) { 
46 case PNG_COLOR_TYPE_GRAY: 
47 case PNG_COLOR_TYPE_PALETTE: 
48 png_ptr->channels = 1; 
49 break; 
50 case PNG_COLOR_TYPE_RGB: 
51 png_ptr->channels = 3; 
52 break; 
53 case PNG_COLOR_TYPE_GRAY_ALPHA: 
54 png_ptr->channels = 2; 
55 break; 
56 case PNG_COLOR_TYPE_RGB_ALPHA: 
57 png_ptr->channels = 4; 
58 break; 
59 } 
60 png_ptr->pixel_depth = (png_byte)( 
61 png_ptr->bit_depth * png_ptr->channels); 
62 png_ptr->rowbytes = PNG_ROWBYTES( 
63 png_ptr->pixel_depth, png_ptr->width); 
64 } 
65 // Dillo datainfo initialization callback 
66 static void Png_datainfo_callback(png_structp png_ptr, 
67 ...) { 
68 DilloPng *png; 
69 png = png_get_progressive_ptr(png_ptr); 
70 ... 
71 // where the overflow happens 
72 png->image_data = (uchar_t *) dMalloc( 
73 png->rowbytes * png->height); 
74 ... 
75 } 

 

Figure 23: The simplified source code from Dillo and libpng with annotations 
inside comments. 

 
Dillo Dillo contains an integer overflow vulnerability (CVE-2009-2294) in its 
png module. Figure 26 presents the simplified source code for this exam- ple. 
Dillo uses the libpng library to read PNG images. The libpng runtime calls 
png_process_data() (line 2) to process each PNG image. This function then 
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calls png_push_read_chunk() (line 11) to process each chunk in the PNG 
image. When the libpng runtime reads the first data chunk (the IDAT chunk), 
it calls the Dillo callback png_datainfo_callback() (lines 66-75) in the Dillo 
PNG processing module. There is an integer overflow vulnerability at line 73 
where Dillo calculates the size of the image buffer as png->rowbytes*png- 
>height. On a 32-bit machine, inputs with large width and height fields can 
cause the image buffer size calculation to overflow. In this case Dillo allocates an 
image buffer that is smaller than required and eventually writes beyond the end 
of the allocated buffer. 

Figure 24 presents the input expression set S for Dillo. S soundly takes inter- 
mediate computations over all execution paths into consideration, including 
the switch branch at lines 45-59 that sets the variable png_ptr->channels and 
PNG_ROWBYTES macro at lines 26-29. Note that the constant c[32] in S cor- 
responds to the possible values of png_ptr->channels, which are between 1 and 
4. 

Swftools Swftools is a set of utilities for creating and manipulating SWF files. 
Swftools contains two tools png2swf and jpeg2swf, which transform PNG and 
JPEG images to SWF files. Each of these two tools contains an integer overflow 
vulnerability(CVE-2010-1516). 

When processing PNG images, Swftools calls getPNG() at png2swf.c:763 to 
read the PNG image into memory. getPNG() first calls png_read_header() to 
locate and read the header chunk which contains the PNG metadata. It then uses 
the metadata information to calculate the length of the image data at png.h:502. 
There is no bounds check on the width and the height value from the header 
chunk before this calculation. On a 32-bit machine, a PNG image with large 
width and height values will trigger the integer overflow error. 

We annotate the statements that read input fields png_width and png_height 
and use SIFT to derive the input expression set for this vulnerability. Figure 24 
presents the input expression set S. 

jpeg2swf contains a similar integer overflow vulnerability when processing 
JPEG images. At jpeg2swf.c:171 jpeg2swf first calls the libjpeg API to read 
jpeg image. At jpeg2swf.c:173, jpeg2swf then immediately calculates the size of 
a memory buffer for holding the jpeg file in its own data structure. Because it 
directly uses the input width and height values in the calculation without range 
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checks, large width and height values may cause overflow errors. Figure 24 
presents the symbolic expression set S for jpeg2swf. 

GIMP GIMP contains an integer overflow vulnerability (CVE-2012-3481) 
in its GIF loading plugin file-gif-load.c. When GIMP opens a GIF file, it calls 
load_image at file-gif-load.c:335 to load the entire GIF file into memory. For 
each individual image in the GIF file, this function first reads the image metadata 
information, then calls ReadImage to process the image. At file-gif-load.c:1064, 
the plugin calculates the size of the image output buffer as a function of the 
product of the width and height values from the input. Because it uses these 
values directly without range checks, large height and width fields may cause an 
integer overflow. In this case GIMP may allocate a buffer smaller than the 
required size. 

We annotate the source code based on the GIF specification and use SIFT to 
derive the input expression set for this vulnerability. Figure 24 presents the gen- 
erated symbolic expression set S. 

5.8.4 Discussion 

The experimental results highlight the combination of properties that, together, 
enable SIFT to effectively nullifying potential integer overflow errors at memory 
allocation and block copy sites. SIFT is efficient enough to deploy in production 
on real-world modules (the combined program analysis and filter generation 
times are always under a second), the analysis is precise enough to successfully 
generate input filters for the majority of memory allocation and block copy sites, 
the results provide encouraging evidence that the generated filters are precise 
enough to have few or even no false positives in practice, and the filters execute 
efficiently enough to deploy with acceptable filtering overhead. 
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VLC {(fmt_size[32] +1[32])+2[32], fmt_size[32] +2[32]} 
png2swf {(c[32] × png_width[32])× png_height[32] +65536[32]

| c = 1,2,3,4} 
jpeg2swf {(jpeg_width[32] × jpeg_height[32])×4[32]} 
Dillo {((png_width[32] ×(c[32] ×sext(png_bitdepth[8],32)) 

+7[32]) >>3[32])× png_height[32], 
png_width[32] × ((c[32] × sext(png_bitdepth[8],32)) 
>> 3[32]) × png_height[32] | c[32] = 1,2,3,4} 

GIMP {(gif _width[32] ×gif _height[32])×2[32], 

gif_width[32] ×gif_height[32] ×4[32]} 

Figure 24: The symbolic expression set S in the bit vector form for VLC, 
Swftools-png2swf, Swftools-jpeg2swf, Dillo and GIMP. The superscript indi- 
cates the bit width of each expression atom. “sext(v, w)" is the signed extension 
operation that transforms the value v to the bit width w. 

6 DIODE 

Integer overflow errors are an insidious source of software failures and security 
vulnerabilities [34, 57, 2]. Because programs with latent overflow errors often 
process typical inputs correctly, such errors can easily escape detection during 
testing only to appear later in production. Overflow errors that occur at memory 
allocation sites can be especially problematic as they comprise a prime target for 
code injection attacks. A typical scenario is that a malicious input exploits the 
overflow to cause the program to allocate a memory block that is too small to 
hold the data that the program will write into the allocated block. The resulting 
out-of-bounds writes can easily enable code injection attacks [34]. 

Figure 25: System Overview 
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6.1.1 DIODE 

We present a new technique and system, DIODE (Directed Integer Overflow Dis- 
covery Engine), for automatically generating inputs that trigger integer overflow 
errors at critical sites. DIODE starts with a target site (such as a memory allo- 
cation site) and a target value (such as the size of the allocated memory block). 
It then uses symbolic execution to obtain an target expression that characterizes 
how the program computes the target value as a function of the input. It then 
transforms the target expression to obtain a target constraint. If the input 1) sat- 
isfies the target constraint while 2) causing the program to execute the target site, 
then it will trigger the error. 

Sanity Checks: A key observation behind the design of DIODE is that programs 
often perform sanity checks on the input before they use the input to compute 
target values. If the input does not pass the sanity checks, the program typically 
emits an error or warning message and does not further process the input. To 
trigger an overflow, an input must therefore take the same path through the sanity 
checks as typical inputs that the program processes successfully. 

One obvious way to obtain an input that satisfies the sanity checks is start with 
a seed input that causes one or more target sites to execute, then use a solver to 
obtain a new input that 1) satisfies the target constraint as well as 2) additional 
constraints that force the solver to generate an input that takes the same path to 
the target site as the seed input. This approach ensures that the input passes the 
sanity checks. 

Blocking Checks: Unfortunately, our results indicate that this approach often 
fails because, in most cases, the path that the seed input takes through the com- 
putation contains additional blocking checks that prevent any input that satisfies 
these checks from triggering the error. To trigger an overflow, an input must take 
a different path through these blocking checks. The challenge is therefore to find 
inputs that 1) satisfy the target constraint, 2) satisfy the sanity checks, and 3) find 
a path through the blocking checks to execute the target site. DIODE meets this 
challenge as follows: 

• Target Site Identification: Using a fine-grained dynamic taint analysis
on the program running on the seed input, DIODE identifies all memory
allocation sites that are influenced by values from the seed input. These
sites are the target sites.
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• Target Constraint Extraction: Based on instrumented executions of the
program, DIODE extracts a symbolic target expression that character- 
izes how the program computes the target value (the size of the allocated
memory block) at each target memory allocation site. The inputs that
appear in this expression are the relevant inputs. Using the target expres- 
sion, DIODE generates a target constraint that characterizes all inputs that
would cause the computation of the target value to overflow (as long as the
input also causes the program to compute the target value).

• Branch Constraint Extraction: Again based on instrumented execu- 
tions of the program, DIODE extracts the sequence of conditional branch
instructions that the program executes to generate the path to the target
memory allocation site. To ensure that DIODE considers only relevant
conditional branches, DIODE discards all branches whose condition is not
influenced by relevant inputs.

For each remaining conditional branch, DIODE generates a branch con- 
straint that characterizes all input values that cause the execution to take
the same path at that branch as the seed input. DIODE will use these
branch constraints to generate candidate test inputs that force the program
to follow the same path as the seed input at selected conditional branches.

• Target Constraint Solution: DIODE invokes the Z3 SMT solver [33] to
obtain input values that satisfy the target constraint. If the program follows
a path that evaluates the target expression at the target memory allocation
site, DIODE has successfully generated an input that triggers the overflow.
If the program performs no sanity checks on the generated values, this step
typically delivers an input that triggers the overflow.

• Goal-Directed Conditional Branch Enforcement: If the previous step
failed to deliver an input that triggers an overflow, DIODE compares the
path that the seed input followed with the path that the generated input
followed. These two paths must differ (otherwise the generated input
would have triggered an overflow).

DIODE then finds the first (in the program execution order) relevant condi- 
tional branch where the two paths diverge (i.e., where the generated input
takes a different path than the seed input). We call this conditional branch
the first flipped branch.

DIODE adds the branch constraint from the first flipped branch to the
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constraint that it passes to the solver, forcing the solver to generate a new 
input that takes the same path as the seed input at the that first flipped 
branch. DIODE then runs the program on this new generated input to see 
if it triggers the overflow. 

DIODE continues this goal-directed branch enforcement algorithm, incre- 
mentally adding the branch constraints from first flipped branches, until 
either 1) it generates an input that triggers the overflow or 2) it generates 
an unsatisfiable constraint. 

If the program does not contain relevant sanity checks, DIODE will typically 
find an input that triggers the overflow immediately when it solves the target 
constraint. If the program does contain relevant sanity checks, DIODE enforces 
flipped sanity checks in the order in which they are executed by the program. 
Each iteration of the goal-directed conditional branch enforcement algorithm 
forces the solver to produce an input that satisfies the next relevant unsatisfied 
sanity check. 

As soon as DIODE enforces enough relevant sanity checks, it typically obtains 
an input that triggers the overflow (if such an input exists). Because the test 
inputs enforce only relevant branch conditions associated with previously failed 
relevant sanity checks, this approach gives the input the freedom it needs to 
navigate the blocking checks that would, if enforced, cause the program to fail to 
execute the target site (and therefore fail to generate an overflow). 

6.1.2 Experimental Results 

We evaluate DIODE on five applications: Dillo 2.1, VLC 08.6h, SwfPlay 0.5.5, 
CWebP 0.3.1, and ImageMagick 6.5.2. We start by using DIODE to locate the 
target memory allocation sites (there are 40 of these sites) and extract, for each 
site, the target constraint. The target constraint for 17 of the 40 target sites is un- 
satisfiable. For 9 of the remaining 23 target sites, DIODE was unable to generate 
an overflow-triggering input. Our manual inspection of the source code verified 
that the applications contain sanity checks that prevent any input from triggering 
an overflow at these target sites. 

DIODE was able to generate inputs that trigger overflows at all of the remaining 
14 sites. We were aware of 3 of these overflows prior to starting the study; the 
remaining 11 were new. We verified that at least 4 of the new overflow errors 
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are still present in the latest versions of these applications as of the submission 
date of this paper. For 2 of the 14 sites, DIODE was able to generate an overflow- 
triggering input with a constraint that forced the input to take the same path as 
the seed input. For the remaining 12 sites, the presence of relevant blocking 
checks requires any overflow-triggering input to take a different path to the target 
site. 

For 9 of the 14 sites DIODE was able to generate an overflow-triggering input 
without enforcing any conditional branches. The remaining 5 sites require the 
enforcement of a minimum of 2, average of 4, and maximum of 5 conditional 
branches. Our manual inspection of the source code indicates that all of the 
enforced conditional branches involve sanity checks on relevant inputs (all but 
one of which were apparently not specifically designed to check for overflows). 
Our results also indicate that, if the application does perform relevant sanity 
checks and the input generation strategy does not take these checks into account, 
the input generation strategy is unlikely to find inputs that trigger an overflow 
even when such inputs exist (Section 7.4). 

6.1.3 Engineering Challenges and Solutions 

DIODE works directly on off-the-shelf, production stripped x86 binaries with 
no need for symbol information or source code. Given a binary and one or more 
seed inputs, DIODE executes instrumented versions of the binary to extract 
the symbolic target expressions and branch conditions for each target memory 
allocation site. For scalability reasons, DIODE stages the symbolic expression 
extraction as follows. 

The first stage runs the application using fine-grained taint tracing to find mem- 
ory allocation sites in which the input influences the size of the allocated mem- 
ory block. This size is the target value of the site. This stage also obtains, for 
each target value, the relevant input bytes, i.e., the input bytes that influence 
the target value. The second stage runs the application again, recording a (com- 
pressed for efficiency) symbolic representation of each computation that the 
relevant input bytes influence. The third stage reads the symbolic representa- 
tion of the computation to automatically derive the symbolic target expressions 
at the target memory allocation sites (these expressions capture the computa- 
tion that the application performs on the relevant input bytes to obtain the target 
value) and the symbolic branch condition expressions at the relevant conditional 
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branches. This staging is essential in enabling DIODE to scale to real-world ap- 
plications — attempting to record a symbolic representation of all computations 
that the application performs is clearly infeasible for real-world applications. 

Given a seed input and candidate values from the Z3 SMT solver for relevant 
input fields within the seed input, DIODE uses Hachoir [8] and Peach [15] to 
generate a new input file with the candidate values. Together, Hachoir and Peach 
reconstruct the input file to accommodate the values, applying techniques such 
as checksum recalculation. 

6.1.4 DIODE and Multi-Application Code Transfer 

Once DIODE has identified the error, the next step is to eliminate the error. The 
standard approach is to report the error to the developers of the application, then 
wait for them to develop and distribute a patch [?]. Drawbacks of this approach 
include the patch development and distribution time and the difficulty of ob- 
taining any patch at all if the application is no longer under development or 
maintained. 

In response to this problem, we have developed CodePhage, an automatic code 
transfer system [54]. CodePhage starts with an input that exposes an error, a re- 
lated input that the application processes correctly, and a donor application that 
processes both inputs correctly (such applications are typically readily available 
for standard input file formats). CodePhage automatically discovers code in the 
donor that eliminates the error, then transfers this code into the original applica- 
tion to eliminate the error. CodePhage operates directly on stripped x86 binary 
donors to generate source-level patches. The code transfer includes automatic 
data structure translation and the automatic location of appropriate code insertion 
points in the recipient. Combining CodePhage with DIODE produces a system 
that automatically discovers and eliminates integer overflow errors — DIODE 
generates inputs that expose errors; CodePhage uses these inputs to locate and 
transfer code from donor applications to eliminate the errors. To the best of our 
knowledge, CodePhage is the first system to automatically transfer code between 
applications. 
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6.1.5 Continuous Automatic Improvement 

Given a the ability to automatically expose errors via tools such as DIODE and 
the ability to automatically repair these errors via tools such as CodePhage [54] 
(as well as the ability to automatically generate repairs using techniques such 
as ClearView [50], Error Virtualization [?, ?], Failure-Oblivious Computing [?], 
and RCV [44]), the next step is to build continuous automatic improvement sys- 
tems that automatically search for errors and generate patches that repair the 
encountered errors. ClearView’s automatic patch generation capability provides 
continuous improvement driven by responses to attacks and errors that users 
encounter in production use [50]. Augmenting the ClearView continuous im- 
provement approach with continuously executing automatic error detection tools 
would make it possible to detect and repair errors before users encounter them 
and before attackers can exploit them. The result would be significantly more 
secure and robust software systems. 

6.1.6 Contributions 

• Targeted Input Generation: It introduces the approach of automatically
generating error-triggering inputs that target potentially vulnerable pro- 
gram sites.

• Sanity and Blocking Checks: It identifies sanity and blocking checks
as an important challenge for techniques that aspire to discover error- 
triggering inputs. Critically, our results indicate that if the program con- 
tains relevant sanity checks, one way to identify relevant sanity checks
and generate inputs that satisfy these checks is to incrementally find and
enforce first flipped conditional branches.

• DIODE: It presents DIODE, an implemented system that works with pro- 
grams that contain relevant sanity checks to automatically generate inputs
that trigger overflow errors. Starting with seed inputs that execute a set
of target memory allocation sites, DIODE uses (optimized) symbolic exe- 
cution to obtain symbolic expressions that characterize how input values
determine the path through the computation to the target site and control
the target value (the number of bytes that the target site allocates).

Using a targeted approach, DIODE generates a sequence of inputs, each
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1 // libpng main data process function. 
2 void png_process_data(png_structp png_ptr,
3 png_infop info_ptr, ...) { 
4 ... 
5 while (png_ptr->buffer_size) { 
6 // This is a wrapper for png_push_read_chunk
7 png_process_some_data(png_ptr, info_ptr); 
8 } 
9 } 

10 void png_push_read_chunk(png_structp png_ptr,
11 png_infop info_ptr) { 
12 if (!png_memcmp(png_ptr->chunk_name,png_IHDR,4)){ 
13 
14 
15 } 

... 
png_handle_IHDR(png_ptr, info_ptr, ...); 

16 else if (!png_memcmp(png_ptr->chunk_name,png_IDAT, 4)) { 
17 // Datainfo callback is called
18 png_push_have_info(png_ptr, info_ptr); 
19 } 
20 } 
21 png_check_IHDR(png_structp png_ptr, 
22 png_uint_32 width, png_uint_32 height, int bit_depth...) { 
23 ... 
24 //Check 3: Height < 1000000L 
25 if (height > PNG_USER_HEIGHT_MAX) { 
26 png_warning(png_ptr, 
27 
28 
29 } 

"Image width exceeds user limit in IHDR"); 
error = 1; 

30 //Check 4: Width < 1000000L 
31 if (width > PNG_USER_WIDTH_MAX) { 
32 png_warning(png_ptr, 
33 
34 
35 } 

"Image width exceeds user limit in IHDR"); 
error = 1; 

36 } 
37 png_get_uint_31(png_structp png_ptr, png_const_bytep buf) {
38 png_uint_32 uval = png_get_uint_32(buf); 
39 // Checks 1 & 2: Checks that width/height < 0x7fffffffL
40 if (uval > PNG_UINT_31_MAX) 
41 png_error(png_ptr, 
42 "PNG unsigned integer out of range"); 
43 return (uval); 
44 } 
45 #define PNG_ROWBYTES(pixel_bits,width) ((pixel_bits)>=8? \
46 ((width)*(((png_uint_32)(pixel_bits))>>3)):\ 
47 ((((width)*((png_uint_32)(pixel_bits)))+7)>>3)) 
48 void png_handle_IHDR(png_structp png_ptr, 
49 png_infop info_ptr, ...) { 
50 ... 
51 // read individual png fields from input buffer
52 width = png_get_uint_31(png_ptr, buf); 
53 height = png_get_uint_31(png_ptr, buf + 4); 
54 bit_depth = buf[8]; 
55 ... 
56 png_ptr->width 
57 png_ptr->height 
58 png_ptr->bit_depth 
59 ... 

= width; 
= height; 
= (png_byte)bit_depth; 

60 png_ptr->pixel_depth = (png_byte)( 
61 png_ptr->bit_depth * png_ptr->channels); 
62 png_ptr->rowbytes = PNG_ROWBYTES( 
63 png_ptr->pixel_depth, png_ptr->width); 
64 } 
65 png_memset_check (png_structp png_ptr, png_voidp s1, int value,
66 png_uint_32 length) 
67 { 
68 
69 
70 
71 
72 
73 } 

png_size_t size; 
size = (png_size_t)length; 
if ((png_uint_32)size != length) 

png_error(png_ptr, "Overflow in png_memset_check.");
return (png_memset (s1, value, size)); 

74 // Dillo datainfo initialization callback
75 static void 
76 Png_datainfo_callback(png_structp png_ptr, png_infop info_ptr) 
77 { 
78 DilloPng *png; 
79 ... 
80 // Check 5: Incorrect check of max image size 
81 if (abs(png->width*png->height) > IMAGE_MAX_W * IMAGE_MAX_H) { 
82 MSG("suspicious image size request %ldx%ld\n", 
83 
84 
85 } 

png->width, png->height); 
return; 

86 
87 
88 } 

// Where the overflow happens 
png->image_data = (uchar_t *)dMalloc(png->rowbytes * png->height); 

Figure 26: Simplified source code from Dillo 2.1 and libpng 
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of which enforces the next relevant conditional branch to find and satisfy 
the sanity checks that would otherwise prevent the input from triggering 
the overflow at the target site. The goal is to find inputs that satisfy the rel- 
evant sanity checks while preserving the ability of the input to successfully 
traverse relevant blocking checks and reach the target site. 

• Experimental Results: It presents experimental results that characterize
the effectiveness of DIODE in discovering overflow errors. For our bench- 
mark applications, DIODE discovers 14 overflows, 11 of which are new.
For 9 of these overflows, DIODE generates overflows without enforcing
any conditional branches. We attribute this success to a lack of relevant
sanity checks in the program.
For the remaining 5 overflows, DIODE discovers the overflow after en- 
forcing a modest (2 to 5) number of conditional branches. We attribute
this success to the ability of DIODE to 1) successfully identify and satisfy
relevant sanity checks that appear in these programs while 2) preserving
the ability of the input to traverse relevant blocking checks that would
otherwise prevent the execution of the target site.

Fuzzing [15, 17] and concolic execution [47, 26, 36, 27] have been shown to be 
effective in discovering errors in the initial input parsing stages of 
computations, but have had little to no success in exposing errors that lie deep 
within the program. DIODE shows that discovering and targeting specific 
potentially vulnerable program sites can effec-tively expose such deep errors. 
One of the keys to success is new techniques that work appropriately with 
sanity and blocking checks to obtain inputs that can successfully tra-verse these 
obstacles to reach the target site. The success of DIODE in exposing integer 
overflow vulnerabilities opens up the field to the further development of other 
targeted techniques that work effectively with sanity and blocking checks to 
expose deep errors. 

6.1 Example 

We next present an example that illustrates how DIODE automatically generates 
an input that triggers an integer overflow in Dillo 2.1, a lightweight open source 
web browser [4]. Figure 26 presents the simplified source code for this example. 
This code is from the libpng library, which Dillo uses to read PNG images. 

Target Site Discovery: DIODE runs Dillo on the seed input, using a fine- 
grained dynamic taint analysis to track the propagation of input bytes through 
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the program. The libpng runtime calls png_process_data() (line 2) to pro- 
cess each PNG image. This function then calls png_push_read_chunk() 
(line 10) to process each chunk in the PNG image. When the libpng run- 
time reads the first data chunk (the IDAT chunk), it calls the Dillo callback 
png_datainfo_callback() (lines 76-88) in the Dillo PNG processing module. 
At line 87, Dillo invokes dMalloc() to allocate the image buffer. Because the 
size of the allocated memory block is influenced by the input, DIODE identifies 
the site as a target memory allocation site. 
Dillo computes the size of the allocated image buffer as png→rowbytes * 
png→height. This is the target value. DIODE’s goal is to generate an input that 
1) executes the target site at line 87 and 2) causes the computation of the targetvalue png→rowbytes * png→height to overflow. The taint information indi- 
cates that the target value is influenced by the PNG width, height, and bitdepth 
fields in the seed input file. These fields are the relevant input bytes. 

Target Expression Extraction: Next, DIODE runs the application again, this 
time with additional instrumentation that records all calculations that involve 
the relevant input bytes. DIODE uses the recorded information to extract the 
symbolic target expression, which characterizes how the application com- 
putes the target value (recall that this target value is the size of the allocated 
image buffer) as a function of the input bytes. Conceptually, this expression 
is ((width*(4*bitdepth))>>3)*height, where width, bitdepth,
and height are the PNG width, bitdepth, and height fields in the input file.
Large values of these fields will cause this expression to overflow. Because of 
endianness conversions that take place when Dillo reads in the input field values, 
the actual target expression is: 
MallocArg(Mul(32,Mul(32,Add(32,ToSize(32,UShr(32,BvAnd(32, 
HachField(32, ’/header/width’),Constant(0xFF000000)), 
Constant(24))),Add(32,Add(32,Shl(32,ToSize(32, 
BvAnd(32,HachField(32, ’/header/width’), Constant(0xFF))), 
Constant(24)),Shl(32,ToSize(32,UShr(32,BvAnd(32,HachField(32, 
’/header/width’),Constant(0xFF00)),Constant(8))), 
Constant(16))),Shl(32,ToSize(32,UShr(32,BvAnd(32, 
HachField(32, ’/header/width’),Constant(0xFF0000)), 
Constant(16))),Constant(8)))),ToSize(32,Shrink(8, 
UShr(32,ToSize(32,Shrink(8,Mul(32,ToSize(32, 
HachField(8, ’/header/bit_depth’)),Constant(4)))), 
Constant(3))))),Add(32,ToSize(32,UShr(32,BvAnd(32, 
HachField(32, ’/header/height’),Constant(0xFF000000)), 
Constant(24))),Add(32,Add(32,Shl(32,ToSize(32, 
BvAnd(32,HachField(32, ’/header/height’), 
Constant(0xFF))),Constant(24)),Shl(32,ToSize(32, 
UShr(32,BvAnd(32,HachField(32, ’/header/height’), 
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Constant(0xFF00)),Constant(8))),Constant(16))),Shl(32, 
ToSize(32,UShr(32,BvAnd(32,HachField(32, 
’/header/height’),Constant(0xFF0000)),Constant(16))), 
Constant(8))))),Constant(0xFFFFFFFF)) 

Here TargetSite indicates that, to overflow, the expression must be greater
than the constant 0xFFFFFFFF (at the end of the last line of the expres- 
sion). The expression itself references the PNG width, bitdepth, and height 
fields from the input file as /header/width, /header/bit_depth, and
/header/height. The remainder of the expression captures the compu- 
tation of the target value as described above. It also incorporates constructs 
(such as Shl and BvAnd) that capture the conversion of the input values from
big-endian to little-endian form. From this target expression, DIODE extracts 
a target constraint that is satisfied if and only if the computation of the tar- 
get expression overflows. The variables in this target constraint represent the 
/header/width, /header/bit_depth, and /header/height PNG
input file fields. The target constraint faithfully represents integer arithmetic as 
implemented in the hardware. 

Target Constraint: DIODE next uses the Z3 solver [33] to obtain candidate 
values for the relevant input byte values that would cause the target value to 
overflow. In this example, the solution sets /header/width to 3880563055L,
/header/bit_depth to 4, and /header/height to
689749785L. It then uses Hachoir [8] and Peach [15] to generate a new input 
file with the candidate values (we call this input file the initial input file) and 
executes Dillo on this new input file. Dillo and libpng contain sanity checks that 
together prevent the input from triggering the overflow. 

Sanity Checks: Dillo and libpng collectively contain five sanity checks. The 
first two checks occur in png_get_uint_31 (line 37), which checks that the 
PNG height and width values are less than 0x7fffffffL. The third and fourth san- 
ity checks occur in png_check_IHDR (lines 21–36), which check that the PNG 
height and width values are less than one million. The fifth and final sanity check 
occurs at line 72, immediately before the target memory allocation site at line 
87. This final sanity check attempts to ensure that the size of the allocated image
does not exceed a specified value (IMAGE_MAX_W * IMAGE_MAX_H) (which
is 6000 * 6000). This final check contains an overflow error that prevents it from 
recognizing and correctly rejecting some inputs that cause overflows at the target 
memory allocation site at line 87. 
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Symbolic Branch Condition Extraction: DIODE uses the recorded instrumen- 
tation information to extract symbolic expressions (the branch conditions) that 
characterize how the application computes the values of the branch conditions 
at conditional branch instructions that are directly influenced by the relevant 
input bytes. For Dillo, the extracted branch conditions characterize how Dillo 
computes the branch conditions for the sanity checks described above. 

Blocking Checks: DIODE is capable of generating a constraint over the relevant 
input bytes that 1) cause the target value to overflow and 2) cause the application 
to follow the same path through the conditional branches to the target site as the 
seed input. If this constraint were satisfiable, DIODE could then use the solution 
to generate an input file that would trigger the overflow. This constraint is not 
satisfiable. Dillo and libpng contain blocking checks that prevent any input that 
would trigger an overflow from following the same path through the relevant 
branches to the target site. 

The blocking checks occur in the png_memset procedure, which initializes a
block of memory whose size is a function of the PNG width and bitdepth input 
fields. The png_memset procedure is hand coded in assembly language using
the SSE2 extensions. This procedure contains a loop that iterates over the block 
of memory initializing the values in the block. The number of iterations of this 
loop is a function of the size of the block of memory. The conditional branch 
that controls the number of iterations is therefore a relevant branch — its condi- 
tion depends on the PNG width and bitdepth fields. Any input that follows the 
same path as the seed input through the relevant conditions must therefore have 
PNG width and bitdepth fields that produce the same number of iterations of the 
loop as the seed inputs. This additional blocking constraint makes it impossible 
to obtain an input that both 1) triggers the overflow and 2) follows the same path 
through the relevant branches as the seed input. 

In our example, the PNG width field is 280. The number of iterations is 8 andthe constraint is width × bitdepth/8 ≤ 1154. The target expression is (width 
× bitdepth/8) × height (which is rowbytes × height). This value cannot over- 
flow because the maximum value of rowbytes is 1154 and the maximum valueof height is 1,000,000 (line 24). These values produce 1154 × 1,000,000 = 
1,154,000,000, which is less than 232. 

Goal-Directed Conditional Branch Enforcement: DIODE next starts goal- 
directed conditional branch enforcement. It initializes the current constraint 
to the target constraint and the current input to the initial input (recall that the 
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initial input was generated to satisfy only the target constraint). It then executes 
Dillo on the seed input and the current input to find the first (in the program 
execution order) relevant branch where the seed and current input take different 
paths. In our example this relevant branch corresponds to the sanity check at 
function png_get_uint_31, line 48 — the seed input satisfies this sanity check, 
while the current input fails the sanity check (because the generated height is too 
large). 

DIODE therefore adds the branch constraint from the corresponding conditional 
to the current constraint. Given this new current constraint, Z3 produces a so- 
lution that sets /header/width to 1632109428L, /header/bit_depth 
to 4, and /header/height to 872360950L. The resulting current input fails
to generate an overflow because it fails the sanity check at png_check_IHDR, 
line 25. 

DIODE adds the branch constraint from the conditional branch that im- 
plements the sanity check to the current constraint and obtains a new 
/header/width of 1081489513L and /header/height of 732927L.
The resulting input file fails to trigger an overflow because it fails the san- 
ity check at png_check_IHDR, line 31. After adding the corresponding 
branch constraint, the solver comes back with /header/width 966175L and
/header/height 484094L. The sanity check at Png_datainfo_callback,
line 81, which checks for an overly large image size, rejects the resulting current 
input. 

Successful Generation of Overflow-Triggering Input: This sanity check, de- 
signed to detect overflows, is itself vulnerable to an overflow — carefully chosen 
values can overflow the checked value and cause the sanity check to incorrectly 
accept an input that overflows the target value at line 87. After adding the branch 
condition from line 81 to the current constraint, the solver comes back with 
/header/width 689853L and /header/height 915210L. With these
values, the generated input successfully navigates the sanity checks and the 
blocking checks to trigger the overflow. The resulting out of bounds writes cause 
Dillo to crash with a SIGSEGV exception. 
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6.2 Goal-Directed Conditional Branch Enforcement Algorithm 

We next present the basic DIODE goal-directed conditional branch enforcement 
algorithm. We first define a core imperative language and a small-step opera- 
tional semantics for this language. This semantics defines both concrete and 
symbolic executions for programs written in the core language. We then use this 
semantics to present the algorithm. 

6.2.1 Core Language 

Figure 27 presents the syntax of a core imperative language with variables, arith- 
metic expressions, boolean expressions, assignments, dynamic memory alloca- 
tion, memory read/write, conditional statements, while loops, and sequential 
composition. 

x,y  ∈  Var    =  PgmVar∪ InpVar 

A,A1, A2  ∈ Aexp ::= n | x | -A | A1 aop A2

B,B1, B2  ∈ Bexp ::= true | false | A1 cmp A2 | 
!B | B1 && B2 | B1 || B2 

C,C1,··· ,Cn  ∈ Stmt ::= skip | x = A | 
x = alloc(y) | x = y[A] | x[A] = y | 
if B S1 S2 | while B S

S,S1, S2 ∈ Seq ::= C1; ···; Cn 

Figure 27: Syntax 

Variables: We divide variables into two classes, PgmVar and InpVar.A program variable ∈ PgmVar is a conventional variable and can 
store integer values or memory addresses as usual. On the other hand, 
an input variable ∈ InpVar represents an external input value to a program. 
DIODE uses input variables to symbolically express how the program computes 
a target value (such as the size of the allocated memory block) from the input 
values. 

Labels: All program statements have a unique label f ∈ Label. before(C) and 

after(C) denote the labels before and after the statement C, respectively. In a se- 
quence S = C1; ··· ;Cn, after(Ci) = before(Ci+1). We define before(C1; ···;Cn) 
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1 

1 
t 

and after(C1; ··· ;Cn) as follows:

before(C1; ··· ;Cn) = before(C1) 
after(C1; ··· ;Cn) = after(Cn) 

 x ∈ PgmVar  
INPVAR

x ∈ InpVar ρ f- A ⇒ (n, n) 
ρ f- n⇒ (n,n) ρ f- x ⇒ ρ(x) ρ f- x ⇒ (π (ρ(x)), x) ρ f- -A⇒ — n) 

(− n, 

ρ f- A ⇒ (n,At) 
ρ f- -A⇒(− n, - 

At) 

 ρ f- A1 ⇒ (n1,n1) ρ f- A2 ⇒ (n2,n2 ) 
ρ f- A1 + A2 ⇒ (n1 +n2,n1 +n2) 

ρ f- A1 ⇒ (n1,At ) ρ f- A2 ⇒ (n2,n2) 

ρ f- A1 + A2 ⇒ (n1 + n2, A1 + n2)

ρ f- A1 ⇒ (n1,n1) ρ f- A2 ⇒ (n2,At ) ρ f- A1 ⇒ (n1,At ) ρ f- A2 ⇒ (n2,At ) 
2 

ρ f- A1 + A2 ⇒ (n1 + n2, n1 + At )
1 2 

ρ f- A1 + A2 ⇒ (n1 +n2, At + At )
2 1 2 

Figure 28: Semantics of Arithmetic Expressions 

6.2.2 Operational Semantics 

The language has three different kinds of values 

n ∈ Int 
b,b1, b2  ∈ Bool = {true,false} 

a  ∈  Addr 

where Int is a set of machine integers of finite bit-width, Bool is the standard set 
of boolean values, and Addr is an address space with an unbounded number of 
memory addresses. 
An environment ρ ∈ Env is a partial mapping from variables to pairs of values 
and symbolic values. A value v ∈ Val is either an integer or an memory address. 
A symbolic value w ∈ SymVal can be a symbolic arithmetic expression, integer, 
or memory address. We use symbolic values to characterize how values were 
computed as a function of input variables. 

ρ  ∈ Env = Var → Val × SymVal 
v,v1,v2  ∈ Val = Int ∪ Addr
w,w1,w2  ∈ SymVal = Int ∪ Addr ∪ Aexp 
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2   

mt 

= 

(f,ρ,m,φ )=[skip ]⇒Stmt (ft,ρ,m,φ ) x ∈  PgmVar  ρ f- A ⇒ (v, w) 
(f,ρ,m,φ ) =[ x = A ]⇒Stmt (ft,ρ[x 1→(v,w)],m,φ )

x ∈ PgmVar ρ f- y ⇒ (n,_) n > 0 a ∈/ dom(m) 

(f,ρ,m,φ ) =[ x = alloc(y) ]⇒Stmt (ft,ρ[x 1→(a,a)],m[(a,0) 1→(0,0), · · ·,(a,n− 1) 1→(0,0)],φ )

     x ∈ PgmVar ρ f- y ⇒ (a,_) ρ f- A ⇒ (n,_) 
(f,ρ,m,φ ) =[ x = y[A] ]⇒Stmt (ft,ρ[x 1→m(a,n)],m,φ )

   ρ f- y ⇒ (v,w) ρ f- x ⇒ (a,_) ρ f- A ⇒ (n,_) 
(f,ρ,m,φ ) =[ x[A] = y ]⇒Stmt (ft,ρ,m[(a,n) 1→(v,w)],
φ) 

ρ f- B⇒(true,Bt) 

ρ f- B ⇒ (true, true) 
(f,ρ,m,φ ) =[ if B S1 S2 ]⇒Stmt (before(S1),ρ,m,φ ) 

(f1,ρ,m,φ )= S1 ]⇒Seq (ft,ρt,mt,φ t) 

(f,ρ,m,φ ) = if B S1 S2 ]⇒Stmt (before(S1),ρ,m,φ → (f,Bt )) (f1,ρ,m,φ ) = if 
[ 

S1 S2 ]⇒St  
1(ft ,ρt,mt,φ t) B mt 

[ [ 1 

ρ f- B ⇒ (false, false) 
(after(S1),ρ,m,φ ) =[ if B S1 S2 ]⇒Stmt (ft,ρ,m,φ ) (f,ρ,m,φ ) =[ if B S1 S2 ]⇒Stmt (before(S2),ρ,m,φ ) 

ρ f- B⇒(false,Bt) 
(f,ρ,m,φ ) =[ if B S1 S2 ]⇒Stmt (before(S2),ρ,m,φ → (f,!Bt ))

(f2,ρ,m,φ )= S2 ]⇒Seq (ft,ρt,mt,φ t) after(S ),ρ, m,φ   = if B S  S ft,ρ, m,φ 
[   

(f2,ρ,m,φ ) = if BS1 S2 ]⇒Stmt (ft ,ρt,mt,φ t)
[ 2 

( 1    2 Stmt 
2 )  [ ]⇒ ( ) 

ρ f- B ⇒ (true,_) (f1,ρ,m,φ )= S ]⇒Seq (ft,ρt,mt,φ t) 
(f,ρ,m,φ ) = while BS ]⇒Stmt (before(S),ρ,m,φ ) (f1,ρ,m,φ ) = [ 

while BS ]⇒St 
1 (ft,ρt,mt,φ t)

[ [ 1 

ρ f- B ⇒ (false, _) 
(after(S),ρ,m,φ ) [ while B S ]⇒Stmt (f,ρ,m,φ ) (f,ρ,m,φ ) =[ while BS ]⇒Stmt (ft,ρ,m,φ )

Figure 29: Small-Step Operational Semantics of Statements 

Similar to an environment, a memory m ∈ Mem receives a base address and an 
offset to the base address as its arguments and returns a pair of a value and a 
symbolic value. 

m,m1,m2 ∈ Mem = Addr → Offset → Val × SymVal 

A branch condition φ ∈ BranchCond is a sequence. Each element (f,B) in this 
sequence records the symbolic branch condition that determines the path taken 
at the conditional branch at label f. The elements appear in φ in the program 
execution order. 

φ ∈ BranchCond := ε |(f,B) →φ 

f and ft denote before(C) and after(C) of statement C in question 
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f is a label in Ci (f,ρ,m, φ) =[ Ci ]⇒Stmt (ft,ρt,mt,φ t)
(f,ρ,m,φ )=[ C1;···;Cn ]⇒Seq (ft,ρt,mt,φ t)

Figure 30: Small-Step Operational Semantics of Sequences 

A program state σ = (f,ρ, m, φ) is composed of the current program point 

(represented by a label f), an environment ρ, a memory m, and a branch con- 
dition φ . At a state (f,ρ, m, φ), the program is about to execute a statement C 
labelled f (i.e. before(C) = f) in the environment ρ and memory m at the program 
point f reached by taking the path recorded by the conditional branches in the 
sequence φ. 

o ∈ State = Label × Env × Mem × BranchCond

Expressions: Figure 28 presents the semantics of arithmetic expressions. Eachexpression evaluates to a pair (v,w), where v ∈ Val is a concrete value and 
w ∈ SymVal is a symbolic expression. The INPVAR rule, for example, defines 
that the evaluation of an input variable x ∈ InpVar produces a pair (π1(ρ(x)),x), 
where 
π1(ρ(x)) is the actual input value and x is the variable that symbolically repre- 
sents that value. The semantics of boolean expressions is defined in a similar 
way. 

Statement: Figures 29 and 30 present the small-step operational semantics of DIODE’s core language. Note that the meaning of f and ft is slightly different in
Figures 29 and 30. In Figure 29, f is the label for the program point before the 
relevant statement C; ft is the label for the program point after C. In Figure 30, f 
and ft are the labels of some program points within (including before for f and 
after for ft) some statement Ci in C1; ··· ;Cn. 

6.2.3 Algorithm 

Figure 31 presents the DIODE goal-directed conditional branch enforcement 
algorithm. Given a program S, an initial program state σ , and a target site f, the 
algorithm first extracts the symbolic target expression B and the observed path φ 
(from the seed input) for that site (line 1). target((S,σ), f) is defined as follows: 

target((S,σ),f)={(π2(ρ(y)),φ) |(σ,(f,ρ,m,φ)) ∈ τ∗ (S)} 
where f = before(x = alloc(y)) 
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The function target((S, σ), f) is defined in terms of the reflexive transitive clo- 
sure τ∗ (S) of the transition relation of the program S, which contains all 
possible 
transitions from a starting state to all reachable states. 

 
The algorithm next uses the overflow(B) function to extract the target constraint 
β (line 2). The overflow(B) function returns a target constraint β such that any 
input that satisfies the target constraint β will trigger an overflow during the 
computation of the target expression B. 

The algorithm next compresses the path φ to coalesce multiple occurrences 
of conditional branch constraints of a conditional statement into a single con- 
straint (line 7 and Figure 32). This single constraint is the conjuction of all of the 
observed branch constraints. The algorithm then extracts the relevant branch con- 
straints (line 8) and performs the goal-directed conditional branch enforcement 
algorithm (lines 10-16). 

The relevant(φ , β ) function takes a branch condition φ and a target constraint β 
as its arguments, and removes conditions that are not relevant to the target con- straint β from the branch condition φ . A condition (f, B) in a branch condition 
is relevant to a target constraint β if the condition B and the target constraint β 
share the same input variable. 

 
 

6.2.4 System Design and Implementation 
 

We next discuss how DIODE deals with the many complications that it must 
overcome to effectively operate on stripped x86 binaries. DIODE consists of 
approximately 9,000 lines of C (most of this code implements the taint and sym- 
bolic expression tracking) and 6,000 lines of Python (the target and branch con- 
straint generation algorithms, code that interfaces with Z3, code that manages 
the database of relevant experimental results, and a distributed work queue sys- 
tem). We first describe our techniques for target site identification. Second, we 
introduce the dynamic instrumentation used for target and branch constraint ex- 
traction. Third, we discuss how DIODE generates and solves target constraints. 
Fourth, we discuss how DIODE generates new inputs. Fifth, we discuss the im- 
plementation of our goal-directed conditional branch enforcement algorithm. 
Finally, we discuss how DIODE detects any errors caused by the overflow. 
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Input   : a program S, an initial state σ , a target label f 
Output : an input I that triggers an integer overflow at label f 

1 for (B,φ) in target((S,σ), f) do 

2 β ←− overflow(B) 
3 if the solver generates an input I that satisfies β then 
4 if the input I triggers an overflow at label f then 
5 return the input I 

6 else continue 

7 φ ←− compress(φ) 
8 φ ←− relevant(φ ,β) 
9 φt ←− true 

10 while true do 
11 if the previous input I satisfies φ then break 

12 φt ←− φt∧ (the first condition in φ that the previous 
in- put I does not satisfy) 

13 if the solver generates an input I that satisfies φt ∧ β then 
14 if the input I triggers an overflow at label f then 
15 return the input I 

16 else break 

17 return not found 

Figure 31: Goal-Directed Conditional Branch Enforcement 

6.2.5 Target Site Identification 

To extract the set of symbolic target expressions that characterizes how the ap- 
plication computes the target value at critical program sites, DIODE uses a fine- 
grained dynamic taint analysis built on top of the Valgrind [47] binary analysis 
framework. Our analysis takes as input a specified taint source, such as a file- 
name or a network connection, and marks all data read from the taint source as 
tainted. Each input byte is assigned a unique label and is tracked by the execu- 
tion monitor as it propagates through the program until it reaches a potential 
target site (e.g., malloc). To track the data-flow dependencies from source to 
sink, our analysis instruments arithmetic instructions (e.g., ADD, SUB), data 
movement instructions (e.g., MOV, PUSH) and logic instructions (e.g., AND, 
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Parameters:φ ∈ BranchCond 

Returns :φ’s compressed form ∈ BranchCond 

1 Function compress(φ) = 
2 begin 
3 if φ is ε then 
4 return ε 
5 else if φ is (f,B) → φ then 
6 B ←− B∧ ( t Bt) 

(f,B ) in φ 

7 φ ←− filter out all (f,Bt) from φ 

8 return (f,B) → compress(φ) 
 

Figure 32: Branch Condition Compression 
 

XOR). Using the dynamic taint analysis on the application and a seed input, 
DIODE generates the set of target sites and relevant input bytes. 

 
 

6.2.6 Target and Branch Constraint Extraction 
 

Next, DIODE reruns the program with additional instrumentation that enables 
DIODE to reconstruct the full symbolic target expression. Conceptually, DIODE 
generates a symbolic record of all calculations that the application performs 
(Section 6.2). Obviously, attempting to record all calculations would produce an 
unmanageable volume of information. DIODE reduces the volume of recorded 
information with the following optimizations: 

• Relevant Input Bytes: DIODE only records calculations that involve the 
relevant input bytes. Specifically, DIODE maintains an expression tree of 
relevant calculations that only tracks calculations that operate on tainted 
data (i.e., relevant input bytes). This optimization drastically reduces the 
amount of recorded information. 

• Simplify Expressions: DIODE further reduces the amount of recorded 
information by simplifying recorded expressions at runtime. Specifically, 
DIODE identifies and simplifies resize, move and arithmetic operations. 
For example, DIODE can convert the following sequence of VEX IR in- 
structions: 

t15 = Add32(t10, 0x1:I32) 
t16 = Add32(t15,0x1:I32) 
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t17 = Add32(t16,0x1:I32) 

that would result in: Add32(Add32(Add32(t10, 0x1), 0x1),0x1)

into: Add32(t10, 0x3)

To convert relevant input bytes to symbolic representations of the input format, 
DIODE uses the Hachoir [8] tool to convert byte ranges into input fields (e.g., in 
the PNG format, bytes 0-3 represent /header/height). 

DIODE also uses the recorded information to extract symbolic expressions that 
characterize how the application computes the values of conditional branch 
instructions that relevant input bytes directly influence. 

6.2.7 Target Constraint Solution 

DIODE uses the Z3 SMT solver [33] to obtain new input values that satisfy the 
target constraint. Note that the generated target constraint is designed to capture 
any overflow in the evaluation of the expression, including in the evaluation of 
subexpressions. For example, if bbp8 ∈ {8,16,32}, there are no values that cause 
the following expression to overflow: 

((width16 × height16) × 4)/bbp8) > 232

But there are values that cause the following subexpression to overflow: 

((width16 × height16) × 4)) > 232

6.2.8 Test Input Generation 

DIODE uses a combination of Hachoir [8] and Peach [15] to generate input files 
with the values obtained from the SMT solver for the target expression. To- 
gether, these tools reconstruct the input file such that it satisfies any checksum 
calculations or any required field orderings. If DIODE needs to operate on an 
unknown input format, it also supports a raw-byte option, where modifications 
are made directly on the input bytes. To deal with any required checksum cal- 
culations in raw-byte mode, DIODE can use standard checksum reconstruction 
techniques [56]. 
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6.2.9 Goal-Directed Branch Enforcement 
 

If a test input that is generated from a target constraint solution fails to trigger 
an integer overflow error, DIODE turns on instrumentation that records the path 
taken at all conditional branches that the seed input executes. DIODE uses this 
instrumentation to find the first conditional branch at which the generated input 
takes a different path from the seed input. DIODE uses this information to drive 
the goal-directed branch enforcement algorithm described above (Section 6.2). 

 
 

6.2.10 Error Detection 
 

We use Valgrind’s memcheck to detect errors (invalid reads and writes; uninitial- 
ized reads and writes) that occur as a result of the overflow. Our automated sys- 
tem therefore does not directly detect the overflow; it only detects the overflow 
indirectly through its effect on the computation (for our benchmark applications, 
we manually verify that the generated input actually produces an overflow and 
generates the reported errors as a result of the overflow). Our automated system 
first filters any errors that occur during t he execution on the seed input. 

 
 

6.2.11 Evaluation 
 

We evaluate DIODE on five applications: Dillo 2.1, VLC 08.6h, SwfPlay 0.5.5, 
CWebP 0.3.1, and ImageMagick 6.5.2. For each application we obtain a seed in- 
put, then use DIODE to automatically generate input files that trigger overflows 
in the applications. We perform all tests on a quad Intel i7 2.2 GHz machine 
with 8 GB RAM. 

 
 

6.2.12 Benchmark Selection 
 

The benchmark applications were selected as follows. First, we select applica- 
tions that process input formats supported by Hachoir [8] and Peach [15]. Sec- 
ond, we filter applications that cannot be successfully processed by DIODE’s 
dynamic instrumentation engine. Third, we select applications that contain at 
least one known integer overflow vulnerability, 
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Application 

Total 
Target 
Sites 

DIODE 
Exposes 
Overflow 

Target 
Constraint 

Unsatisfiable 

Sanity 
Checks 

Prevent 
Overflow 

Dillo 2.1 12 3 1 8
VLC 08.6h 4 4 0 0 

SwfPlay 0.5.5 8 3 5 0 
CWEBP 0.3.1 7 1 6 0 

ImageMagick 6.5.2 9 3 5 1 

Table 1: Target Site Classification 

6.2.13 Target Site Classification 

Table 1 classifies the target sites in our benchmark applications. There is one row 
for each application. The first column (Application) identifies the application. 
The second column (Total Target Sites) presents total number of exercised mem- 
ory allocation sites from the executions on the seed inputs. These sites are the 
target sites. The third column (DIODE Exposes Overflow) presents the number 
of sites for which DIODE was able to generate an input that triggered an over- 
flow at the site. The fourth column (Target Constraint Unsatisfiable) presents the 
number of sites for which the target constraint, by itself, is unsatisfiable. We veri- 
fied, via a manual inspection, that there is no input that will cause an overflow at 
any of these sites. The fifth column (Sanity Checks Prevent Overflow) presents 
the number of remaining sites. For all of these remaining sites, we manually veri- 
fied that the application contains sanity checks that ensure that there is no input 
that triggers an overflow at that site. 

Note that, for each target site, either 1) DIODE finds an input that triggers an 
overflow at that site, or 2) no such input exists. Our analysis indicates that, ex- 
cept for VLC 0.8.6h, whenever DIODE is able to generate an input that triggers 
an overflow at a given site, the application is missing overflow sanity checks for 
that site (of course, the applications contain other relevant sanity checks that 
DIODE must successfully navigate to trigger the overflow). VLC 0.8.6h contains 
ineffective overflow sanity checks that are designed to protect the application 
against overflow, but do not, in fact, do so. DIODE is able to generate inputs that 
successfully evade these checks to trigger overflows at the target sites. 
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Application 

 
Target 

 
CVE Number 

 
Error Type 

Analysis and 
Discovery Time 

Enforced 
Branches 

Target 
Success Rate 

 Dillo 2.1 png.c@203 CVE-2009-2294 SIGSEGV/InvalidRead (42m) 8m 4/35 0/200  Dillo 2.1 fltkimagebuf.cc@39 New SIGSEGV/InvalidRead (42m) 7m 5/69 0/200  
Dillo 2.1 Image.cxx@741 New SIGSEGV/InvalidRead (42m) 7m 4/5779 0/200  

VLC 0.8.6h messages.c@355 New SIGSEGV/InvalidRead (6m) 1m 2/117 32/200  
VLC 0.8.6h wav.c@147 CVE-2008-2430 InvalidRead/Write (6m) 1m 0/62 2/2  
VLC 0.8.6h dec.c@277 New SIGSEGV/InvalidRead (6m) 8m 5/291 57/200  
VLC 0.8.6h block.c@54 New InvalidRead (6m) 4m 0/151 200/200  

SwfPlay 0.5.5 jpeg_rgb_decoder.c@253 New SIGSEGV/InvalidWrite (7m) 13m 0/1736 200/200  
SwfPlay 0.5.5 jpeg_rgb_decoder.c@257 New SIGSEGV/InvalidWrite (7m) 13m 0/1736 200/200  
SwfPlay 0.5.5 jpeg.c@192 New SIGABRT/InvalidWrite (7m) 1m 0/1012 200/200  
CWebP 0.3.1 jpegdec.c@248 New SIGSEGV/InvalidWrite (11m) 2s 0/651 155/200  

ImageMagick 6.5.2 xwindow.c@5619 CVE-2009-1882 SIGSEGV/InvalidWrite (6m) 1m 0/2521 200/200  
ImageMagick 6.5.2 cache.c@803 New SIGSEGV/InvalidWrite (6m) 1m 0/306 199/200  
ImageMagick 6.5.2 display.c@4393 New SIGSEGV/InvalidWrite (6m) 2m 0/154 200/200  

 

Table 2: Evaluation Summary 
 

6.2.14 Overflow Characteristics 
 

Table 2 summarizes the results for each overflow. The table contains one line for 
each overflow that DIODE discovers. The first column (Application) identifies 
the application that contains the overflow. The second column (Target) presents 
the source code file and line that contains the memory allocation statement for 
which the overflow occurs. The third column (CVE Number) presents either the 
CVE number of the overflow (if the overflow was known) or "New" if the over- 
flow was new. We note that all but three of the 14 overflows were new. Four of 
the 11 new overflows persist in the latest versions of the benchmark applications 
as of the submission date of this paper. Specifically, the latest versions of CWebP 
and Display, CWebP 0.4.1 and Display 6.8.9-8, are still vulnerable to error trig- 
gering inputs discovered by DIODE. We have notified the developers and are 
awaitingconfirmation. 

The fourth column (Error Type) characterizes the effect of the overflow on the 
application for the first input (that DIODE discovers) that triggers the overflow. 
In most cases the overflow causes the program to generate a SIGSEGV excep- 
tion and crash, either from an invalid read or from an invalid write as presented 
in the table. The remaining two overflows cause the application to perform in- 
valid reads and/or writes that do not crash the application. We detect these in- 
valid reads and writes using the Valgrind memcheck tool [47], which monitors 
the reads and writes and detects invalid reads and writes. All of the invalid reads 
or writes occur because the overflow makes the memory block allocated at the 
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target allocation site too small to contain the data. 

The fifth column (Analysis and Discovery Time) presents the initial analysis 
time required for each application (performed once) and the subsequent time to 
generate an error input for each bug. Each entry in this column is of the form (A) 
B, where A is the analysis time and B is the time required to generate the error 
input. 

The sixth column (Enforced Branches) presents the number of relevant condi- 
tional branches that DIODE enforced before generating an input that triggered 
the overflow. Each entry in this column is of the form X/Y, where X is the num- 
ber of enforced conditional branches and Y is the total number of relevant con- 
ditional branches on the path that the seed input takes to the target memory allo- 
cation site. We note that the number of enforced conditional branches is small, 
especially relative to the total number of relevant conditional branches — to 
discover the overflow, DIODE enforces only between two to five out of the 35 to 
5779 total relevant conditional branches. Our manual inspection of the code 
indicates that all of the enforced branches are sanity checks, but that (apparently) 
only one of these checks is designed (obviously incorrectly) to detect an over- 
flow (Section 7.2). 

6.2.15 Blocking Checks 

Recall that DIODE can generate a constraint that requires 1) the computation of 
the target value to overflow and 2) the input to follow the same path through the 
relevant conditional branches as the seed input. If this constraint is satisfiable, 
the solution typically immediately provides an input that will trigger an overflow 
at the site. Because of blocking checks, this constraint is unsatisfiable for all but 
two of the sites, specifically SwfPlay 0.5.5 at jpeg.c@192 and CWebP 0.3.1 at 
jpegdec.c@248. 

6.2.16 Inputs That Satisfy Target Constraint Alone 

The seventh column (Target Success Rate) presents the results from the experi- 
ment in which DIODE generated 200 inputs that satisfied the target constraint 
by itself (with none of the conditional branch constraints added to the target 
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constraint passed to the solver). Note that all of these inputs will trigger an over- 
flow at the target memory allocation site if they follow a path that evaluates the 
target expression at that site. Note also that every discovered input that triggers 
the overflow is in the set of inputs that satisfy the target constraint alone and 
therefore could potentially be generated as one of the sampled 200 inputs. 

Each entry in the column is of the form X/200, where X is the number of gen- 
erated inputs that actually trigger the overflow. We note that there is a bimodal 
distribution — in general, either all or the vast majority of the 200 generated 
inputs trigger the overflow or none or few of the 200 generated inputs trigger the 
overflow. This bimodal distribution is correlated with the presence or absence of 
sanity checks on relevant input values — without sanity checks, all or the 
vast majority of the generated inputs trigger the overflow. If the application con- 
tains sanity checks, the generated inputs are unlikely to pass the sanity checks to 
trigger the overflow. These data indicate that, if the application contains sanity 
checks and the input generation strategy does not take these checks into account, 
the input generation strategy is unlikely to find inputs that trigger an overflow 
(even when such inputs exist). 

For CVE-2008-2430, the target expression is of the form x + 2, where x is an input 
field. The target constraint for this expression has only two solutions (because 
there are only two values of x that cause the target expression to overflow). 

6.2.17 Target and Enforced Branch Success Rate 

The eighth column (Target + Enforced Success Rate) presents experimental re- 
sults for those overflows that DIODE discovered only after enforcing some of 
the conditional branches. DIODE generated 200 inputs that satisfied the corre- 
sponding constraint (i.e., the target constraint plus the constraints that enforced 
the discovered first flipped branches in Algorithm 31). Each entry in the column 
is of the form X/200, where X is the number of generated inputs that trigger the 
overflow (note that we do not run this experiment if the majority of the inputs 
that satisfy the target constraint alone also trigger the overflow). 

We note that, for three of the five overflows, the vast majority of the generated in- 
puts trigger the overflow. For the remaining two overflows, approximately half of 
the generated inputs trigger the overflow. We attribute this success to DIODE’s 
ability to produce inputs that satisfy the sanity checks while preserving their 
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flexibility to satisfy the blocking checks and traverse alternate paths through the 
computation to reach the target memory allocation site and trigger the overflow. 

The success of DIODE in generating these overflows also illustrates the difficulty 
of writing sanity checks that detect inputs that cause overflows — even though 
Dillo 2.1 and VLC 0.8.6h contain sanity checks, these checks do not detect all 
inputs that trigger overflows. 
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7 CodePhage 
 

Horizontal gene transfer is the transfer of genetic material between cells in differ- 
ent organisms. Examples include plasmid transfer (which plays a major role in 
acquired antibiotic resistance [25]), virally-mediated gene therapy [38], and the 
transfer of insect toxin genes from bacteria to fungal symbionts [23]. Because of 
its ability to directly transfer functionality evolved and refined in one organism 
into another, horizontal gene transfer is recognized as a significant factor in the 
development of many forms of life [39]. 

Like biological organisms, software applications often face challenges and 
threats from the environment in which they operate. Despite significant software 
development effort, errors and security vulnerabilities still remain a important 
concern. Many of these errors are caused by an uncommon case that the develop- 
ers of one (or more) of the applications did not anticipate. But in many cases, the 
developers of another application did anticipate the uncommon case and wrote 
correct code to handle it. 

 
 

7.1 The Code Phage (CP) Code Transfer System 
 

We present Code Phage (CP), a novel horizontal code transfer system that auto- 
matically eliminates errors in recipient software applications by finding correct 
code in donor applications, then transferring that code from the donor into the 
recipient. The result is a software hybrid that productively combines beneficial 
code from multiple applications: 

• Donor Selection: CP starts with an application and two inputs: an input 
that triggers an error and a seed input that does not trigger the error. Work- 
ing with a database of applications that can read these inputs, it locates a 
donor that processes both inputs successfully. The hypothesis is that the 
donor contains a check, missing in the recipient, that enables it to process 
the error-triggering input correctly. The goal is to transfer that check from 
the donor into the recipient (and eliminate the error in the recipient). 

• Candidate Check Discovery: To identify the check that enables the donor 
to survive the error-triggering input, CP analyzes the executed conditional 
branches in the donor to find branches that take different directions for the 
seed and error-triggering inputs. The hypothesis is that if the check elimi- 
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nates the error, the seed input will pass the check but the error-triggering 
input will fail the check (and therefore change the branch direction). 

• Patch Excision: CP performs an instrumented execution of the donor
on the error-triggering input to obtain a symbolic expression tree that
expresses the check as a function of the input fields that determine its
value. This execution translates the check from the data structures and
name space of the donor into an application-independent representation
suitable for insertion into another application.

• Patch Insertion: CP next uses an instrumented execution of the recipi- 
ent on the seed input to find candidate insertion points at which all of the
input fields in the excised check are available as recipient program expres- 
sions. At each such point, it is possible to translate the check from the
application-independent representation into the data structures and name
space of the recipient. This translation, in effect, inserts the excised check
into the recipient.

• Patch Validation: CP inserts the translated check into the recipient at
each candidate insertion point in turn, then attempts to validate the patch.
It recompiles the application, uses regression testing to verify that the
patch preserves correct behavior on the regression suite, and checks that
the patch enables the patched recipient to correctly process the error- 
triggering input. As available, CP also reruns error detecting tools to gen- 
erate additional error-triggering inputs, which it then uses to recursively
eliminate any residual or newly discovered errors.
As appropriate, CP can also exploit the semantics of specific classes of
errors (such as divide by zero or integer overflow) to perform additional
validation steps. For integer overflow errors, for example, CP analyzes the
check, the expression that overflows, and other existing checks in the
recipient that are relevant to the error to verify that there is no input that 1)
satisfies the checks to traverse the exercised path through the program to
the overflow and also 2) triggers the overflow.

• Retry: If the validation fails, CP tries other candidate insertion points,
other candidate checks, and other donors.

If the transferred check detects an input that may trigger the error, it exits the 
application before the error occurs. The check therefore introduces no new and 
potentially unpredictable behaviors — it simply narrows the set of inputs that the 
application decides to process. This narrowing is conceptually similar to trans- 
formations that eliminate concurrency errors by narrowing the set of possible 
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interleavings [45, 37]. 
 
 

7.1.1 Usage Scenarios 
 

Proprietary Donors: The CP donor analysis operates directly on stripped bi- 
naries with no need for source code or symbolic information of any kind. CP 
can therefore use arbitrary binaries, including closed-source proprietary bina- 
ries, as donors for other applications. A developer could, for example, reduce 
development and testing effort by simply omitting checks for illegal inputs, then 
using CP to automatically harden the application by automatically transferring in 
checks from more intensively engineered (including closed-source proprietary) 
applications. 

Multilingual Code Transfer: CP supports multilingual code transfer between 
applications written in different programming languages. Because CP works 
with binary donors, the current implementation supports arbitrary (compiled) 
donors. The current CP implementation generates source-level patches in C. It 
would be straightforward to extend CP to generate patches in other languages. 
Given appropriate binary patching capability, it would also be straightforward to 
generate binary patches, including hot patches for running applications. 

Multiversion Code Transfer: In addition to transferring checks between in- 
dependently developed applications, we have also used CP to transfer checks 
between different versions of the same application. The motivation is to auto- 
matically obtain a targeted update that eliminates an error in an older version 
without the disruption often associated with full upgrade [31]. 

Divergent Functionality: Even though CP works with applications that process 
the same inputs, the recipient and donor do not need to implement the same 
functionality. Many errors occur in code that parses the input, constructs the 
internal data structures that hold the input, and/or reads the input into those data 
structures. Even when the applications have different goals and functionality, 
the fact that they both read the same input is often enough to enable a successful 
transfer. 

Continuous Multiple Application Improvement: CP can work with any source 
of seed and error-triggering inputs. Its current integration with the DIODE auto- 
matic error-discovery system [52] points the way to future systems that combine 
1) large libraries of applications, 2) a variety of automatic error discovery tools 
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(for example, DIODE and BuzzFuzz [35]), and 3) CP along with other auto- 
matic error repair tools such as ClearView [50], staged program repair [42], and 
automatic code fracture and recombination [53]. Continuously running the error- 
discovery tools across the library of applications, then using horizontal code 
transfer and other program repair mechanisms to generate repairs delivers an 
automatic application improvement system that productively leverages the entire 
global software development enterprise. 

Such a system holds out the promise of automatically producing robust software 
hybrids that incorporate the best code produced anywhere by any mechanism. 
Given the ability of DIODE and CP to work with stripped binary donors, it is 
possible to include closed-source software produced by proprietary software 
development efforts into this continuous application improvement system. 

7.1.2 Scope 

CP is currently designed to locate and transfer checks, including all computation 
required to compute the checks, between applications that process the same 
inputs. The goal is to change the (incorrect) semantics of the recipient so that it 
rejects inputs that would otherwise trigger the error. The patch validation phase, 
along with the rejection of unstable insertion points (Section 7.3), is designed to 
reduce, but not necessarily eliminate, the possibility of rejecting inputs that the 
recipient could have processed correctly. The excised computation can be, and 
in practice always is, distributed across multiple system layers and abstraction 
boundaries within the donor — the excised computation always includes code 
from multiple system libraries and procedures within the application. 

In the current implementation of CP, a set of values sufficient to compute the 
check must be available in the recipient at one of the granularities at which they 
are accessed in the excised computation and in one of the same byte orders. It is 
straightforward to extend the implementation to reassemble values sufficient to 
compute the check from bits arbitrarily distributed across the address space of 
the recipient as long such a set of bits is accessible via the name space of the 
recipient. 

CP is currently designed to transfer code that computes a check. But the basic 
CP transfer techniques are designed to dynamically track, extract, and insert any 
computation (or computations) that generate any value (or values) in the donor 
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as long as CP can identify the value(s). The two critical questions are identifying 
the value(s) in the donor and the insertion point(s) in the recipient. CP automates 
this identification for checks in the donor that eliminate errors in the recipient. 

 
 

7.1.3 Experimental Results 
 

We evaluate CP on 10 errors in 7 recipient applications (JasPer 1.9 [10], gif2tiff 
4.0.3 [11], CWebP 0.31 [3], Dillo 2.1 [4], swfplay 0.55 [18], Display 6.5.2-8 [9], 
and Wireshark-1.4.14 [22]). The donor applications are FEH-2.9.3 [5], mtpaint 
3.4 [13], ViewNoir 1.4 [20], gnash 0.8.11 [7], OpenJpeg 1.5.2 [14], Display 
6.5.2-9 [9], and Wireshark-1.8.6 [22]. CP was able to successfully generate 
patches that eliminated the errors, in five cases demonstrating the ability to trans- 
fer patches from multiple donors (see Section 7.4). 

For all of the applications except Wireshark-1.4.14 (which uses Wireshark 1.8), 
CP successfully excises code from an independently developed alien donor and 
successfully implants the code into the recipient. The ability of CP to translate 
the check from the donor name space and data structures into the name space 
and data structures of the recipient is critical to the success of many transfers. 
Wireshark-1.4.14 demonstrates the ability of CP to deliver targeted updates that 
eliminate specific errors while leaving the behavior and functionality of the 
recipient otherwise intact. 

 
 

7.1.4 Contributions 
 

This paper makes the following contributions: 

• Basic Concept: CP automatically eliminates software errors by identify- 
ing and transferring correct code from donor applications into incorrect 
recipient applications. In this way CP can automatically harness the com- 
bined knowledge and labor invested across multiple software systems to 
improve each application. 
To the best of our knowledge, CP is the first system to automatically trans- 
fer code across multiple applications. 

• Name Translation: One of the major challenges in code transfer is trans- 
lating the names of values from the name space of the donor into the name 
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space of the recipient. CP shows how to use instrumented executions of 
the donor and recipient to meet this name translation challenge. 

• Data Structure Translation: Another major code transfer challenge is
translating between different data representations. CP shows how to use in- 
strumented executions and data structure traversals to meet this challenge
— it takes code that accesses values stored in the data structures of the
donor and produces code that accesses values stored in the data structures
of the recipient.

• Donor Code Identification: It presents a mechanism to identify correct
code in donor applications for transfer into recipient applications. CP uses
two instrumented executions of the donor to automatically identify the
correct code to transfer into the recipient: one on the seed input and one
on the error-triggering input (which the donor, but not the recipient, can
successfully process). A comparison of the paths that these two inputs
take through the donor enables CP to isolate a single check (present in the
donor but missing in the recipient) that eliminates the error.

• Insertion Point Identification: CP automatically identifies appropriate
check insertion points within the recipient at which 1) the values needed to
express the transferred check computation are available as valid program
expressions in the name space of the recipient and 2) the transferred check
will not affect observed computations unrelated to the error.

• Experimental Results: We present experimental results that characterize
the ability of CP to eliminate ten otherwise fatal errors in seven recipient
applications by transferring correct code from seven donor applications.
For all of the 10 possible donor/recipient pairs, CP was able to obtain a
successful validated transfer that eliminated the error.

7.2 Example 

We next present an example that illustrates how CP automatically patches an 
integer overflow error in CWebP, the Google conversion program for the WepP 
image format. 

Figure 33 presents (simplified) CWebP source code that contains an integer 
overflow error. CWebP uses the libjpeg library to read JPG images before con- 
verting them to the CWebP format. It uses the ReadJPEG function to parse 
the JPG files. There is a potential overflow at line 9, where CWebP calculates 
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1 int ReadJPEG(...) { 
2 ... 
3 width = dinfo.output_width; 
4 height = dinfo.output_height; 

5 stride = dinfo.output_width * 
6 dinfo.output_components * 
7 sizeof(*rgb); 
8 /* the overflow error */ 
9 rgb = (uint8_t*)malloc(stride * height); 

10 if (rgb == NULL) { 
11 goto End; 
12 } 
13 ... 
14 } 

 

Figure 33: (Simplified) CWebP Overflow Error 
 

the size of the allocated image as stride * height, where stride is: width * out- 
put_components * sizeof(rgb). 

On a 32-bit machine, inputs with large width and height fields can cause the 
image buffer size calculation at line 9 to overflow. In this case CWebP allocates 
an image buffer that is smaller than required and eventually writes beyond the 
end of the allocated buffer. 

Error Discovery: In our example, CP works with seed and error-triggering in- 
puts identified by the DIODE integer-overflow discovery tool, which performs 
a directed search on the input space to discover inputs that trigger integer over- 
flow errors at memory allocation sites [52]. In the error-triggering input in our 
example, the JPG height field is 62848 and the width field is 23200. 

Donor Selection: CP next searches a database of applications that process JPG 
files to find candidate donor applications that successfully process both the seed 
and the error-triggering inputs. In our example, CP determines that the FEH 
image viewer application processes both inputs successfully. 

Candidate Check Discovery: CP next runs an instrumented version of the FEH 
donor application on the two inputs. At each conditional branch that is influ- 
enced by the relevant input field values (in this case the JPG height and width 
fields), it records the direction taken at the branch and a symbolic expression for 
the value of the branch condition. The free variables in these expressions 
represent the values of input fields. 

CP operates under the hypothesis that one of the FEH branch conditions imple- 
ments a check designed to detect inputs that trigger the overflow. Under this 
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1 # define IMAGE_DIMENSIONS_OK(w, h) \
2 ( ((w) > 0) && ((h) > 0) && \

3 ((unsigned long long)(w) * \ 
4 (unsigned long long)(h) <= (1ULL << 29) - 1) )
5 
6 char load(...) { 
7 int w, h; 
8 struct jpeg_decompress_struct cinfo; 
9 struct ImLib_JPEG_error_mgr jerr; 

10 FILE *f; 
11 ... 
12 if (...) { 
13 ... 
14 im->w = w = cinfo.output_width; 
15 im->h = h = cinfo.output_height; 

16 /* Candidate check condition */ 
17 if ((cinfo.rec_outbuf_height > 16) || 
18 (cinfo.output_components <= 0) || 
19 !IMAGE_DIMENSIONS_OK(w, h)) 
20 { 
21 // Clean up and quit
22 ... 
23 return 0; 
24 } 
25 } 
26 } 

Figure 34: (Simplified) FEH Overflow Check 

hypothesis, the seed input and error-triggering inputs take different directions 
at this branch (because the error-triggering input would satisfy the check and 
the seed input would not). CP therefore considers the check for each branch 
at which the seed and error-triggering inputs take different directions to be a 
candidate check. 

In our example, CP discovers a candidate check in the imlib library that FEH 
uses to load and process JPG files. Figure 34 presents (simplified) source code 
for this check.3  The macro IMAGE_DIMENSIONS_OK (defined on lines 
1-4, invoked on line 19), performs an overflow check on the computation of out- 
put_width * output_height. This check enables FEH to detect and correctly 
process the error-triggering input without overflow. 

Candidate Check Excision: The FEH check is expressed in terms of the FEH 
data structures. The next step is to translate the check from this form into an 

 

3 Because CP operates on binaries, information about the source code for the donor patch 
is, in general, not available. So that we can present the FEH source code for the check in our 
example, we used the symbolic debugging information in FEH to manually locate the source 
code for the check. 
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# define IMAGE_DIMENSIONS_OK(w, h) \ 
((unsigned long long)(w) * (unsigned long long)(h) <= (1ULL << 29) - 1) ) 

<= 

* 

 
 
 
 
 
 
 

Add(Width(BvOr(Constant(0x0),Width(Shl(Widt 
h(BvAnd(Variable("/start_frame/content/ 

height"),Constant(0xff)), 
Constant(32)),Constant(0x8)), Constant(32))), 
Constant(32)),Width(BvOr(Constant(0x0),Width 

(UShr(Width(BvAnd(Variable("/start_frame/ 
content/height"),Constant(0xff00)), 

Constant(32)),Constant(0x8)), Constant(32))), 

 
 
 
 
 
 
 

Add(Width(BvOr(Constant(0x0),Width(Shl(Widt 
h(BvAnd(Variable("/start_frame/content/ 

width"),Constant(0xff)), 
Constant(32)),Constant(0x8)), Constant(32))), 
Constant(32)),Width(BvOr(Constant(0x0),Width 

(UShr(Width(BvAnd(Variable("/start_frame/ 
content/width"),Constant(0xff00)), 

Constant(32)),Constant(0x8)), Constant(32))), 
((unsigned long long)(w)    ((unsigned long long)(h) (1ULL << 29) - 1) Constant(32))) Constant(32))), Constant(32))),  

DONOR 

<= RECIPIENT 

* 
dinfo->image_height dinfo_image_width 

if ((((unsigned long) ((dinfo.output_height) * 

 
 
 
 
 

536870911 

 

Add(BvOr(Constant(0x00),Shl(Width(BvAnd(Va 
riable('/start_frame/content/ 

height'),Constant(0xFF)),Constant(32)),Consta 
nt(8))), 

BvOr(Constant(0x00),Width(UShr(BvAnd(Varia 
ble('/start_frame/content/ 

height'),Constant(0xFF00)),Constant(8)),Const 
ant(32))))", 32 

 

Add(BvOr(Constant(0x00),Shl(Width(BvAnd(Va 
riable('/start_frame/content/ 

width'),Constant(0xFF)),Constant(32)),Constan 
t(8))), 

BvOr(Constant(0x00),Width(UShr(BvAnd(Varia 
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width'),Constant(0xFF00)),Constant(8)),Consta 
nt(32))))", 32, 

((unsigned long) (dinfo.output_width)))) <= 536870911))• dinfo.output_image dinfo.output_width 
 
 

Figure 35: Patch Transfer 
 

application-independent form that expresses the check as a function of the input 
bytes that determine its value. This translation uses an instrumented execution 
of the donor to dynamically track the flow of input bytes through program. CP 
uses this instrumentation to obtain symbolic expressions, in terms of the input 
bytes, for relevant expressions that the application computes. In our example the 
translated application-independent symbolic expression for the check is: 
ULessEqual(32,Shrink(32,Mul(64,Shrink(32,Div(32,BvOr(64,Shl(64, 
ToSize(64,SShr(32,Sub(32,Add(32,Constant(8),Shl(32,Add(32,Shl 
(32,ToSize(32,BvAnd(16,HachField(16,’/start_frame/content/height’), 
Constant(0xFF))),Constant(8)),ToSize(32,UShr(32,BvAnd(16,HachField(16, 
’/start_frame/content/height’),Constant(0xFF00)),Constant(8)))), 
Constant(3))),Constant(1)),Constant(31))),Constant(32)),ToSize(64, 
Sub(32,Add(32,Constant(8),Shl(32,Add(32,Shl(32,ToSize(32,BvAnd(16, 
HachField(16,’/start_frame/content/height’),Constant(0xFF))),Constant(8)), 
ToSize(32,UShr(32,BvAnd(16,HachField(16,’/start_frame/content/height’), 
Constant(0xFF00)),Constant(8)))),Constant(3))),Constant(1)))),Constant(8))), 
Shrink(32,Div(32,BvOr(64,Shl(64,ToSize(64,SShr(32,Sub(32,Add(32, 
Constant(8),Shl(32,Add(32,Shl(32,ToSize(32,BvAnd(16,HachField(16, 
’/start_frame/content/width’),Constant(0xFF))),Constant(8)), 
ToSize(32,UShr(32,BvAnd(16,HachField(16,’/start_frame/content/width’), 
Constant(0xFF00)),Constant(8)))),Constant(3))),Constant(1)), 
Constant(31))),Constant(32)),ToSize(64,Sub(32,Add(32,Constant(8), 
Shl(32,Add(32,Shl(32,ToSize(32,BvAnd(16,HachField(16, 
’/start_frame/content/width’),Constant(0xFF))),Constant(8)), 
ToSize(32,UShr(32,BvAnd(16,HachField(16,’/start_frame/content/width’), 
Constant(0xFF00)),Constant(8)))),Constant(3))),Constant(1)))), 
Constant(8))))),Constant(536870911)) 

 

There are two primary reasons for the complexity of this excised check. First, 
it correctly captures how FEH manipulates the input fields to convert from big- 
endian (in the input file) to little-endian (in the FEH application) representation. 
The excised check correctly captures the shifts and masks that are performed as 
part of this conversion. Second, FEH casts the 16-bit input fields to unsigned 
long long integers before it performs the overflow check. The excised check 
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properly reflects these operand length manipulations. 

Patch Transfer: The next step is to insert the check into the recipient CWebP 
application. There are two related challenges: 1) finding a successful insertion 
point for the check and 2) translating the check from the application-independent 
representation into the data representation of the recipient CWebP application. 
Note that this translation must find CWebP data structures that contain the rele- 
vant input field values and express the check in terms of these data structures. 

Candidate Patch Insertion Point Identification: CP runs CWebP (the recipi- 
ent) on the seed input. At each function the CP instrumentation records the input 
fields that the function reads. CP identifies program points at which the function 
has read all of the input fields as potential patch insertion points. In our example, 
CP recognizes that the ReadJPEG function has read both the input JPG width 
and height fields after line 4 in Figure 33. It therefore identifies the point after 
this statement as a candidate insertion point. The next step is to use the variables 
and data structures available at this point to express the check. 

Patch Translation: To translate the patch into the recipient, CP first finds the 
relevant input fields as stored in the variables and data structures of the recipient. 
It then determines how to use these fields to express the check. 

To find the values, CP uses the debugging information from the recipient binary 
to identify the local and global variables available at that candidate insertion 
point. Using these variables as roots, it traverses the data structures to find mem- 
ory locations that store relevant input fields or values computed from relevant 
inputs fields and constants. As part of this traversal it also records expressions 
(in the name space of the recipient) that evaluate to each of the input fields or 
input field expressions. In our example CP determines that dinfo.height contains 
the JPG height input field and dinfo.width contains the JPG width input field. 

The next step is to use the extracted recipient expressions to express the ex- 
tracted check in the name space of the recipient. CP recursively processes the 
application-independent expression tree to find subtrees that always evaluate to 
the same value as one of the extracted recipient expressions. CP uses an SMT 
solver to determine this equivalence (see Section 7.3). In our example, CP pro- 
duces the following translated check, which it inserts after line 4 in Figure 33: 
if (!((unsigned long long)dinfo.output_height * 

(unsigned long long)dinfo.output_width)<=536870911)) { 
exit(-1); 

} 

90
Approved for public release; distribution unlimited.



 
 

Note that CP was able to successfully convert the complex application- 
independent excised check into this simple form — the SMT solver detects that 
CWebP and FEH, even though developed independently, perform semanti- 
cally equivalent endianess conversions, shifts, and masks on the input fields. CP 
therefore realizes that the input fields are available in the same format in both 
the CWebP and FEH internal data structures, enabling CP to generate a simple 
patch that accesses the CWebP data structures directly with no complex format 
conversion. The generated patch evaluates the check and, if the input fails the 
check, exits the application. The rationale is to exit the application before the 
integer overflow (and any ensuing errors or vulnerabilities) can occur. 

Multiple Patch Insertion Points: For CWebP, CP identifies 38 candidate inser- 
tion points. 2 of these points are unstable — in some executions of the point, the 
generated expressions reference values other than the desired JPEG width and 
height input fields. To avoid perturbing computations not related to the error, CP 
filters out these unstable points. CP then sorts the remaining generated patches 
by size and attempts to validate the patches in that order. In our example the 
above patch is the first patch that CP tries (and this patch validates). 

Patch Validation: Finally, CP rebuilds CWebP, which now includes the gen- 
erated patch, and subjects the patch to a number of tests. First, it ensures the 
compilation process finished correctly. Second, it executes the patched version of 
CWebP on the error-triggering input and checks that the input no longer triggers 
the error (CP runs CWebP under Valgrind memcheck to detect any errors that do 
not manifest in crashes). Third, it runs a regression test that compares the output 
of the patched application to the output of the original application, on a regres- 
sion suite of inputs that the application is known to process correctly. Fourth, 
CP runs the patched version of the application through the DIODE error discov- 
ery tool to determine if DIODE can generate new error-triggering inputs. In our 
example DIODE finds no new error-trigging inputs — if it had, CP would have 
rerun the entire patch discovery and generation process, patching the discovered 
errors, until DIODE discovered no new errors. The end result, in this example, is 
a version of CWebP that contains a check that completely eliminates the integer 
overflow error. 
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Figure 36: High-level overview of CP’s components 

7.3 Design and Implementation 

We next discuss how CP deals with the many technical issues it must overcome 
to successfully transfer code between applications. CP consists of approxi- 
mately 10,000 lines of C (most of this code implements the taint and symbolic 
expression tracking) and 4,000 lines of Python (code for rewriting donor expres- 
sions into expressions that can be inserted into the recipient, code that generates 
patches from the bitvector representation, code that interfaces with Z3, and the 
code that manages the database of relevant experimental results). Figure 36 
presents an overview of the CP components. 

Donor Selection For each input format, CP works with a set of applications 
that process that format. Given seed and error-triggering inputs, CP considers 
applications that can successfully process both inputs as potential donors. Open 
source repositories such as github can be a rich source of independently de- 
veloped applications that process the same input formats. Different versions, 
releases, or variants of the same application can also be good sources of patches 
either for regression errors introduced during maintenance or to obtain targeted 
updates for specific errors. Our set of benchmark donors includes both sources 
of applications (Section 7.4). 

Candidate Check Discovery and Excision To extract candidate checks from 
donor applications, CP implements a fine-grained dynamic taint analysis built on 
top of the Valgrind [47] binary analysis framework. Our analysis takes as input a 
specified taint source, such as a file or a network connection, and marks all data 
read from the taint source as tainted. Each input byte is assigned a unique label 
and is tracked by the execution monitor as it propagates through the application. 
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Our analysis instruments arithmetic instructions (e.g., ADD, SUB), data move- 
ment instructions (e.g., MOV, PUSH), and logic instructions (e.g., AND, XOR). 
It also supports additional instrumentation to reconstruct the full symbolic ex- 
pression of each computed value, which records how the application computes 
the value from input bytes and constants. 

CP can optionally work with only a specified subset of the input bytes. We call 
this subset the relevant bytes. Working with properly identified relevant bytes 
can often improve the efficiency of the analysis without hampering its ability to 
find successful patches (because only a subset of the bytes are relevant to the 
patch). In our experiments, CP identifies the relevant bytes as those input fields 
that differ between the seed and error-triggering inputs. 

CP uses Hachoir [8] to convert byte ranges into symbolic input fields. If Hachoir 
does not support a particular input format or is otherwise unable to perform this 
conversion, CP also supports a raw mode in which all input bytes are represented 
as offsets. Raw mode is effective, for example, for closely related inputs gener- 
ated by standard error-finding tools [52, 35, 55, 15]. 

Identify Candidate Checks: CP runs the dynamic taint analysis on the donor 
application twice, once with the seed input and once with the error-triggering in- 
put. For each execution, CP extracts the executed conditional branch instructions 
and records which direction each execution of the branch takes. After filtering 
out branches that are not affected by the relevant bytes, branches that take dif- 
ferent directions are the candidate branches. CP proceeds under the assumption 
that the condition associated with one of the candidate branches implements 
the desired check. Starting with the first (in the program execution order) candi- 
date branch, CP attempts to transfer each check in turn until a transferred check 
successfully validates. 

Check Excision: To obtain the application-independent form of the check, CP 
reruns the application with additional instrumentation that enables CP to recon- 
struct the full symbolic expression tree for the candidate check. This expression 
tree records how the donor application computes the condition of the candidate 
check from the input byte values and constants. Conceptually, CP generates a 
symbolic record of all calculations that the application performs. To reduce the 
volume of recorded information, CP only builds expression trees for calculations 
that involve the relevant input bytes. This optimization substantially reduces the 
volume of generated data. 
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A key challenge in transferring code between applications is translating between 
the different data representations in the donor and recipient. Translating the 
check into a symbolic expression over the input bytes performs the first half of 
this translation — it translates the check out of the naming environment and data 
structures of the donor into an application-independent representation. 

Bit Manipulation Optimizations: As the symbolic expressions are recorded 
during the instrumented execution of the donor, CP applies several optimizations 
that reduce the size of the generated expressions. Among the most important of 
these are optimizations that simplify expressions generated by bit manipulation 
operations (such as shifts) that extract, align, or combine operands of subsequent 
computations. Because such bit manipulation operations occur frequently (for 
example, when the application extracts pieces of data read from the input or 
because of SSE optimizations) in donor binaries, the rules significantly reduce 
the size and complexity of the extracted symbolic expressions. 

Figure 37 presents several rewrite rules that CP applies to simplify the sym- 
bolic expressions that such operations generate. The first two rules simplify 
symbolic expressions that extract the bottom or top 8-bit byte, respectively, of 
a 16 bit value. Here Shl(8,E) represents an 8-bit left shift of the 16 bit value E; 
ShrinkH(8,Shl(8,E)) converts the resulting 16 bit value into an 8 bit value by 
extracting the top byte. One important consequence of these rules is that, by 
eliminating discarded bytes from the symbolic representation, they can disentan- 
gle bytes from adjacent input fields that were read into the same word as part of 
the input process. 

Note that the rules require the operand of the shift to be represented symboli- 
cally as a concatenation of two 8-bit bytes (the operand E must be of the form 
[b1, b2], where b1 and b2 are independent bytes). Potential other representations 
that may appear as an operand include unified 16-bit values produced by addi- 
tion or subtraction operations. CP does not further optimize the representation 
of bit manipulation operations involving such unified operands as there is no 
straightforward way to disentangle the two bytes of the unified operand. 

The last two rules simplify symbolic expressions that start with a 16-bit value 
composed of two 8-bit bytes, shift one of the bytes out of the value, then or 
another byte into the position vacated by the shift. Here BvOrH(b1, Shr(8,E)) 
bitwise ors b1 into the top byte of the 16 bit value produced by Shr(8,E). The 
result is a new 16 bit value. Once again, one of the benefits of these rules is that 
they can eliminate bytes that would otherwise entangle unrelated input fields that 
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  E ≡ [b1,b2]   

ShrinkH(8, Shl(8, E)) ⇒ b2 

  E ≡ [b2,b3]   

BvOrH(b1,Shr(8,E)) ⇒ [b1,b2] 

  E ≡  [b1, b2]   

ShrinkL(8, Shr(8, E)) ⇒ b1 

  E ≡ [b2,b3]   

BvOrL(b1,Shl(8,E)) ⇒ [b3,b1] 

 

Figure 37:  CP Rewrite Rules for Bit Manipulation Operations 

appear adjacent in the input. Like the first two rules, the last two rules require the 
initial 16-bit value to be represented symbolically as a concatenation of two 8-bit 
values. 

CP also implements similar rules for other combinations of operand sizes. 
Specifically, there are similar rules for expressions that represent results of bit 
manipulation operations involving combinations of 8, 16, 32, and 64 bit values. 

 
 

Check Insertion To transfer the candidate check to an insertion point in the 
recipient application, CP rewrites the check to access the input field values as 
stored in variables and data structures available in the recipient. 

Candidate Insertion Points: The first step is to find candidate insertion points – 
program points at which a set of values computed from all of the input bytes in 
the symbolic check expression are available as program expressions in the recip- 
ient. CP runs an instrumented version of the recipient that tracks the flow of the 
relevant input bytes through the application. Whenever the recipient evaluates 
an expression that involves the relevant input bytes, CP records the symbolic 
expression for the computed value. This symbolic expression records how the 
recipient application computes the value as a function of the input bytes and 
constants. Using these collected symbolic expressions, CP finds functions that 
access a set of values computed from all of the input bytes in the check. It then 
finds points within these functions at which the function has accessed all of these 
values. These points are the set of candidate insertion points. 

Unstable Points: In general, the application may execute a candidate insertion 
point multiple times, potentially accessing different input bytes or even different 
values not derived from the input bytes on different executions. Candidate inser- 
tion points in multipurpose code such as libraries, for example, may execute with 
different values when invoked from different parts of the computation. To mini- 
mize the risk that the inserted check may affect a computation not related to the 
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error, CP filters out all points that access different values on different executions 
(we call these points unstable points). The goal is choose the insertion point so 
that the patch performs the check only when it is relevant to the error. 

Paths to Relevant Values: CP next attempts to express the extracted symbolic 
check in terms of the available variables and data structures at the remaining sta- 
ble candidate insertion points. Given a candidate point, CP uses the debugging 
information to find the set V of local and global variables available at that point. 
Starting with these variables as roots, it then uses the debugging information to 
traverse the data structures to find relevant values (values computed from rele- 
vant fields and constants) stored in the data structures. As part of the traversal it 
computes the data structure traversal paths that lead to these relevant values. 

Figure 38 presents the traversal algorithm. Starting from a given variable or data 
structure traversal path, the algorithm computes names that lead to reachablerelevant values. Each name has the form (p, E). Here p is a path through the 
reachable data structures. Each path p starts at a variable v, then identifies a se- 
quence of pointer dereferences and data structure field accesses that reaches the 
relevant value. The symbolic expression E records how the program computed 
the value from relevant input bytes. 

For each variable v ∈ V , CP invokes the traverse algorithm and merges the re- 
sulting sets of names. The algorithm recursively traverses the data structures of 
the recipient program based on type signatures from the debugging informa- 
tion. At line 15, it uses the debugging information to determine the type of the 
path p. At line 16, it queries the symbolic tracking analysis results to obtain the 
corresponding symbolic expression for the traversed path p. 

Check Translation: The next step is to rewrite the application-independent form 
of the check to use the variables and data structures of the recipient. Figure 39 
presents the CP expression rewrite algorithm. The algorithm takes as input a 
symbolic expression E and a set of names Names produced by the traversal 
algorithm in Figure 38. It then uses the Names to translate E to use the available 
variables and data structures at the candidate insertion point in the recipient. 
E may take one of four possible forms, 1) an input field, 2) a constant c, 3) aunary operation expression (unaryop, E), or 4) a binary operation expression
(binop, E1, E2). 

The algorithm first uses an SMT solver to try to find a single value in the recip- 
ient with the same value as the expression E. In practice, CP is often able to 
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find single recipient values that are equivalent to very complex expressions E — 
many of these symbolic expressions include complex shift and mask operations 
that are also performed by the recipient as it reads the input. Otherwise the al- 
gorithm decomposes the expression and attempts to rewrite each subexpression 
recursively (lines 13-15 for expressions with unary operations, lines 16-19 for 
expressions with binary operations). Constants (line 20) translate directly. 

CP implements two optimizations that reduce the number of solver invocations: 
1) if two symbolic expressions depend on different sets of input bytes, CP does 
not invoke the solver and 2) CP caches all queries to the SMT solver so that it 
can retrieve results from the cache for future duplicate queries. Together, these 
two optimizations produce an order of magnitude reduction in the translation 
times. 

There are two ways for the Rewrite algorithm to fail. First, it does not attempt to 
rearrange or reorder input bits as stored in the recipient data structures to match 
the groups of input bits as accessed by the application-independent repre- 
sentation of the check. So all of the required input bits may be available in the 
recipient but not stored as a contiguous block in the order accessed by the check. 
Second, it is possible for the function to access a value required to compute the 
check, then overwrite the value before it reaches the insertion point. In this case 
the value may be unavailable at the insertion point even though it was previously 
accessed by the enclosing function. 

If CP successfully constructs the new condition, CP generates a candidate patch 
as an if statement inserted at the insertion point. In the current implementation, 
CP transforms the constructed bitvector condition into a C expression as the 
if condition (appropriately generating any casts, shifts, and masks required to 
preserve the semantics of the transferred check). If the condition is satisfied, the 
patch exits the application with an exit(-1). 

 
 

Patch Validation CP first recompiles the patched recipient application. It then 
executes the patched application on the bug-triggering input to verify that the 
patch successfully eliminates the error for that input. CP also runs the patched 
build on a set of regression suite inputs to validate that the patch does not break 
the core functionality of the application. As appropriate, CP may also test other 
error-triggering inputs or run additional error-finding tools (such as DIODE) to 
determine if the patch leaves any residual errors behind. If so, CP recursively 
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1 
1 1 

1 

1 Parameters: 
2 p: A data structure path. 
3 Subroutines: 
4 Type(p) :  The type of the path p. 
5 Fields(t) :  If t  is a struct type, the set of fields in t. 
6 Addr(p) :  The address (at runtime) for the path p. 
7 Expr(a) :  The symbolic expression for the value 
8 stored in the address a. 
9 Visited(a) :  A boolean that tracks whether the address 

10 was already processed to avoid infinite recursion. 
11 Returns: 
12 A set of path, symbolic expression pairs. 
13 
14 Traverse(p) { 
15 T   ←  Type(p) 
16 E   ←  Expr(Addr(p)) 
17 if (Visited(Addr(p))) return 0/ 
18 else if (T  is Pointer) return Traverse("(*"+p+")") 
19 else if (T  is Struct) 
20 Names   ←  0/ 
21 for f  in Fields(T ) 
22 Names   ←  Names  ∪  Traverse(p+"."+ f )
23 return Names 
24 else if (E  /= NIL) return {(p, E)}
25 return 0/
26 } 

Figure 38: CP Data Structure Traversal Algorithm 

1 Parameters: 
2 E: A symbolic expression over input values. 
3 Names: A set of available names. 
4 Subroutines: 
5 SolverEquiv(E1, E2): Query the SMT solver to determine 
6 whether expressions E1   and E2   are equivalent. 
7 Return: 
8 Rewritten expression of E  or NIL if failed 
9 

10 Rewrite(E, Names) { 
11 for (p, Et) in Names
12 if (SolverEquiv(E,Et)) return p
13 if (E  is of the form (unaryop,E1)) 
14 Et   ←  Rewrite(E1,Names)
15 if (Et /= NIL) return (unaryop,Et ) 
16 else if (E  is of the form (binop, E1, E2)) 
17 Et   ←  Rewrite(E1,Names) 
18 Et ←t Rewrite(E2,Names) t    t 

i2f (E /E=t NIL and /= NIL) return (binop,E ,E )
19 1 2 1     2 
20 else if (E  is Constant c) return c
21 return NIL 
22 } Figure 39: CP Rewrite Algorithm 
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attempts to find and transfer patches that eliminate the residual errors. 
 
 

7.4 Experimental Results 
 
 

 
Recipient 

 
Target 

 
Donor 

Generation 
Time 

# Relevant 
Branches 

# Flipped 
Branches 

# Used 
Checks 

# Candidate 
Insertion Pts 

Check 
Size 

CWebP 0.3.1 jpegdec.c:248 feh-2.9.3 4m 157 5 1 38 - 2 - 31 = 5 57 → 4 CWebP 0.3.1 jpegdec.c:248 mtpaint-3.40 4m 94 5 1 38 - 2 - 30 = 6 28 → 2 
CWebP 0.3.1 jpegdec.c:248 viewnior-1.4 1m 137 1 1 38 - 2 - 31 = 5 111 → 12 

Dillo 2.1 png.c@203 mtpaint-3.40 3m 29 [1,1] 2 16 - 1 - 8 = 7 
16 - 1 - 9 = 6 

[(18 → 1),(18 → 1)] 

Dillo 2.1 png.c@203 feh-2.9.3 3m 120 [4,1] 2 16 - 1 - 9 = 6 
16 - 1 - 9 = 6 

[(76 → 8), (37 → 3)] 

Dillo 2.1 png.c@203 viewnior-1.4 18m 117 1 1 16 - 1 - 9 = 6 79 → 12 
Dillo 2.1 fltkimagebuf.cc@39 mtpaint-3.40 13m 29 [1,1] 2 22 - 1 - 10 = 11 

22 - 1 - 11 = 10 
[(18 → 1),(18 → 1)] 

Dillo 2.1 fltkimagebuf.cc@39 feh-2.9.3 2m 120 4 1 22 - 1 - 11 = 10 76 → 9 
Dillo 2.1 fltkimagebuf.cc@39 viewnior-1.4 9m 117 1 1 22 - 1 - 11 = 10 79 → 12 

Display 6.5.2 xwindow.c@5619 viewnior-1.4 4m 142 6 1 74 - 5 - 60 = 9 55 → 14 
Display 6.5.2 xwindow.c@5619 feh-2.9.3 4m 147 6 1 74 - 7 - 58 = 9 17 → 4 
Display 6.5.2 display.c@4393 viewnior-1.4 4m 142 6 1 49 - 2 - 45 = 2 55 → 14 
Display 6.5.2 display.c@4393 feh-2.9.3 4m 147 6 1 49 - 2 - 45 = 2 17 → 4 

SwfPlay 0.5.5 jpeg_rgb_decoder.c@253 gnash 12m 264 7 1 43 - 3 - 35 = 5 53 → 12 
SwfPlay 0.5.5 jpeg.c@192 gnash 18m 264 [1,1,3,3] 4 38 - 2 - 34 = 2 

 
38 - 2 - 34 = 2 
38 - 0 - 37 = 1 
38 - 0 - 37 = 1 

[(5 →1),(5 →1), 
(4 →1),(3 →1)] 

JasPer 1.9 jpg_dec.c:492 OpenJpeg 1.5.2 1m 63 19 1 18 - 1 - 16 = 1 188 → 3 
gif2tiff 4.0.3 gif2tiff.c:355 Display 6.5.2-9 9m 9 2 1 2 - 1- 0 = 1 3 → 3 

Wireshark 1.4.14 packet-dcp-etsi.c:258 Wireshark 1.8.6 4m 101 2 1 40 - 5 - 15 = 20 6 → 2 
 

Figure 40: Summary of CP Experimental Results 
We evaluate CP on three classes of errors — out of bounds access, integer over- 
flow, and divide by zero errors. The two out of bounds access errors occur in 
JasPer 1.9 [10] and gif2tiff 4.0.3 [11] and are triggered by JPEG2K (JasPer) and 
gif (gif2tiff) images. OpenJPEG [14] and Display 6.5.2-9 [9] are the donors. We 
use standard fuzzing techniques to obtain the seed and error-triggering inputs. 

The seven integer overflow errors occur in four applications: CWebP 0.31 [3], 
Dillo 2.1 [4], swfplay 0.55 [18], and Display 6.5.2-8 [9]. Two of these errors 
were listed in the CVE database; one was first discovered by BuzzFuzz [35]; the 
other four were, to the best of our knowledge, first discovered by DIODE [52]. 
The errors are triggered by JPG image files (CWebP), PNG image files (Dillo), 
SWF video files (swfplay), and TIFF image files (Display). The donor applica- 
tions include FEH-2.9.3 [5], mtpaint 3.4 [13], ViewNoir 1.4 [20], and 0.8.11 [7]. 
We use DIODE to obtain the seed and error-triggering inputs. 

The two divide by zero errors occur in Wireshark-1.4.14 [22] and are triggered 
by degenerate network packets with zero size fields. Wireshark-1.8.6 is the 
donor — in this scenario the goal is to obtain a targeted update that eliminates 
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the error without the potential disruption of a full update to a later version. Start- 
ing with an error-triggering input from the corresponding CVE report, we used 
standard techniques to obtain a corresponding seed input that did not trigger the 
error. 

We obtained integer overflow errors from the DIODE project [52]. The buffer 
overflow errors are reported as security vulnerabilities in the CVE database 
(CVE-2012-3352,CVE-2013-4231). We selected donor applications by collect- 
ing applications that successfully process the seed and error-triggering inputs. 
We further filter any applications that use the same underlying library (and ver- 
sion) to process inputs (e.g., we select only one donor application that uses lib- 
jpeg to process jpeg images). For every class of errors, we try all combinations 
of recipient-donor pairs that can process the same inputs. 

Results Summary: Figure 40 summarizes the results of these experiments. 
There is a row in the table for each combination of error and donor. The first 
column (Recipient) identifies the recipient application that contains the error. 
The second column (Target) identifies the source code file and line where the 
vulnerability occurs. The third column (Donor) identifies the donor application. 
The fourth column (Patch Time) presents the amount of time that CP required to 
generate the patch. 

The fifth column (Relevant Branches) presents the number of branches that de- 
pend on relevant values. The sixth column (Flipped Branches) presents the num- 
ber of branches that take different directions for the seed and error-triggering 
inputs. Several entries are of the form [X1, ..., Xn]. These entries correspond to 
errors with multiple error-triggering inputs. The first patch eliminates the error 
for the first input but there is a residual error. Recursive CP executions transfer 
patches to eliminate each remaining residual error, with an error eliminated per 
patch transfer. In all cases the final sequence of patches completely eliminates 
the exposed errors. For all four cases with multiple patches DIODE, running on 
the previously patched version, automatically generates the additional error- 
triggering inputs. The seventh column (Used Checks) presents the number of 
checks that CP transferred to eliminate the error. In all of our experiments, the 
transferred checks came from the first (in the execution order) flipped branch. 
The eighth column (Candidate Insertion Points) contains entries of the form 
X − Y − Z = W . Here X is the number of candidate insertion points, Y is the 
number of unstable points (CP filters these points), Z is the number of insertion 
points at which CP was unable to translate the patch (see Section 7.3), and W is 
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the number of points at which CP is able to insert a successfully translated patch. 
The ninth column (Check Size) contains entries of the form X → Y . Here X is the 

number of operations in the excised application-independent representation of 
the check. Y is the number of operations in the translated check as it is inserted 
into the recipient. We attribute the significant size reduction to the ability of the 
CP Rewrite algorithm (Figure 39) to recognize complex expressions that are 
semantically equivalent. The typical scenario is that CP recognizes that a 
complex application-independent expression containing shifts and masks from 
(for example) the endianess conversion is equivalent to a single variable or data 
structure field in the recipient. 

We next discuss several specific patches in more detail (see Section 7.2 for a 
detailed example that illustrates how CP corrects an integer overflow error). 

 
 

7.4.1 JasPer 1.9 
 

JasPer 1.9 is an open-source image viewing and image processing utility. It is 
specifically known for its implementation of the JPEG-2000 standard. JPEG- 
2000 images may be composed of multiple tiles, with the number of tiles speci- 
fied by a 16 bit field in the input file. JasPer contains an off-by-one error in the 
code that processes JPEG-2000 tiles. When JasPer processes the tiles, it includes 
code that is designed to check that the number of tiles actually present in the im- 
age is less than or equal to the number specified in the input file. Unfortunately, 
the check was miscoded — at jpc_dec.c:492, JasPer checks if the number of the 
current tile is greater than (>) the specified number of tiles. The correct check is 
a greater than or equal to (>=) check. The result is that JasPer can write tile data 
beyond the end of the buffer allocated to hold that data. 

The following correct check appears in OpenJPEG 1.5.2 at j2k.c:1394:4 

if ((tileno < 0) || (tileno >= (cp->tw * cp->th))) { ... } 

CP automatically locates the compiled version of this correct check in the Open- 
JPEG binary and correctly transfers the check into JasPer at jpc_dec.c:492 as: 
if (!(!(dec->numtiles <= sot->tileno))) { exit(-1); } 

 
 

4 CP does not have access to the OpenJPEG 1.5.2 source code — it instead transfers the 
check directly from the compiled binary. For presentation purposes, we used the debugging 
information to manually locate this check in the OpenJPEG source code. 
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To generate this check, CP had to map tileno in OpenJPEG 1.5.2 to dec->numtiles
in JasPer and recognize that cp->tw * cp->th in OpenJPEG 1.5.2 has the same 
value as sot->tileno in JasPer. This patch highlights CP’s data structure trans- 
lation capabilities and its ability to recognize different expressions in different 
applications that produce the same value. We note that the OpenJPEG tileno < 0
check is redundant — other constraints in both OpenJPEG and JasPer ensure that 
tileno and dec->numtiles are always nonnegative. 

7.4.2 gif2tiff 

gif2tiff is a utility in the libtiff-4.0.3 library which converts gif images to the tif 
format. gif2tiff is vulnerable to a buffer overflow attack when processing gif 
images. gif2tiff iterates over the size of the LZW code size, which under the gif 
specification should be limited to a size of 12. Without a check to constrain the 
code size to 12, the loop over the code size in gif2tif.c:355 can be forced to 
overwrite over a set of statically allocated buffers. 

CP successfully created a patch for this error using ImageMagick-6.5.2-9 as the 
donor. The transfered check appears in ImageMagick-6.5.2-9 as: 
#define MaximumLZWBits 12 
if (data_size > MaximumLZWBits) 

ThrowBinaryException(CorruptImageError, 
"CorruptImage",image.filename); 

This check was translated into the following patch for gif2tiff (gif2tiff.c:357) as: 
if (!(datasize <= 12)) {exit(-1);} 

The check correctly enforces the gif specification that the code size should have 
a maximum size of 12 and protects gif2tiff from the buffer overflow vulnerabil- 
ity. 

7.4.3 Wireshark 

Wireshark is a popular open-source packet analyzer. It is used for a variety of 
networking tasks such as network analysis, network troubleshooting and proto- 
col development. Wireshark 1.4.14 contains a divide by zero error at packet-dcp- 
etsi.c:276 in code that processes DCP ETSI packets. 

102
Approved for public release; distribution unlimited.



 
 

The following check, which appears in a later version of Wireshark (1.8.6) and 
checks that the length of the packet payload is not zero before attempting to 
further process the packet, eliminates this error: 
if (real_len) ... 

 

Recognizing that real_len and plen contain the same input fields (the different 
names reflect the substantial reengineering between the two versions), CP inserts 
the check into Wireshark 1.4.14 at packet-dcp-etsi.c:258 as: 
if (!(!(plen == 0))) { exit(-1); } 

 

Empirically, returning zero as the result of divide by zero errors often enables the 
application to continue to execute productively [44]. We therefore implemented 
an alternate strategy that returns 0 if the check fires rather than exiting. Our 
results and manual analysis indicate that this strategy delivers correct continued 
execution for both of the Wireshark divide by zero errors. 

 
 

7.4.4 Discussion 
 

The patches we present above are, in general, representative of the remaining 
patches (our CP technical report presents these remaining patches [54]). Like the 
JasPer patch, 10 of the remaining 18 patches access the stored field values via 
pointers. This fact highlights the critical role that the CP data structure traversal 
and rewrite algorithms play in enabling the data structure translations required 
for successful transfers. As the numbers in Figure 40 indicate, the CP rewrite 
algorithm is effective at generating compact readable patches — like the patches 
we present above, they are all expressible in at most several lines of code. 

Our manual evaluation of the patches indicates that 1) they all completely elimi- 
nate the target error and 2) they do not affect computations unrelated to the error. 
We attribute this success to three factors: 1) the developers of the donor applica- 
tions were able to write code that correctly handled the case responsible for the 
error in the recipient, 2) CP was able to locate and transfer the check that han- 
dles this case, and 3) eliminating unstable points is an effective way to filter out 
the many points that appear in multipurpose library code. The result is focused 
patches that fire only when necessary to eliminate the target error. 

The results also highlight several aspects of CP’s techniques. Most of the ap- 
plications contain more than 100 checks that involve relevant input fields. The 
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ability of CP to find the single check (within these more than 100 checks) that 
eliminates the error highlights the effectiveness of CP’s check identification tech- 
nique (which uses flipped branches to isolate the relevant check). CP’s ability 
to find effective patch insertion points among the many potential source code 
locations highlights the effectiveness of CP’s insertion point location algorithm. 

All of the transfers involve naming and/or data structure translations. In some 
cases the translation could be accomplished via a simple variable renaming (if 
the source code for the donor was available, which it may not be). In other 
cases there is a more significant data structure translation that involves finding 
values stored in different structures or accessed via pointers. Even though the 
application-independent representation of the checks is typically quite complex, 
CP’s Rewrite algorithm is very effective at finding small recipient representa- 
tions of the check. 

Given that programs often deploy different data representations, any general 
code transfer system requires some data structure translation technique. CP’s 
technique, which is based on representing values as functions of the input bytes, 
then traversing the data structures to find desired values, would be equally effec- 
tive for any approach that can establish a correspondence between executions of 
the donor and recipient. 

CP’s current data structure translation technique is effective at translating (poten- 
tially quite complex) computations that can be expressed as single expressions. 
Already this technique enables CP to eliminate significant errors in real-world 
applications. Generalizing CP to support expressions with simple conditionals 
would be relatively straightforward — augmenting CP’s data structure transla- 
tion technique with a symbolic execution of the two branches would suffice. An 
effective loop body identification and generalization technique would enable CP 
to support loops. 
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8 Conclusion 

Modern software projects contain so many defects, and the cost of correcting 
defects remains so large, that projects typically ship with a long list of known but 
uncorrected defects. 

The CIDER project researched techniques to automate the process of discover- 
ing, neutralizing and repairing software bugs and vulnerabilities. As part of this 
goal, we build components of a continuous automatic improvement system that 
can automatically search for errors and generate patches that repair the encoun- 
tered errors. By removing the human from the loop, patch generation time can 
be reduced, patch robustness improved, leading to fewer unpatched systems. 

Our experimental results show that we have the building blocks for creating 
continuous automatic improvement systems. 
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